Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Topological number integral in the Yang-Mills theory in boundary and volume forms

+ 3 like - 0 dislike
3652 views

Suppose non-trivial vacuum configuration of the Yang-Mills theory with the winding number $n$:
$$
\tag 1 A_{\mu}(x) = g_{(n)}(x)\partial_{\mu}g^{-1}_{(n)}(x)
$$

The winding number is given by the surface integral of topological density over the 3-sphere:
$$
\tag 2 n = \frac{1}{24\pi^{2}}\int_{S^{3}} d\sigma_{\mu}\epsilon^{\mu\nu\alpha\beta}\text{tr}\big[(g_{(n)}\partial_{\nu}g_{(n)}^{-1})(g_{(n)}\partial_{\alpha}g_{(n)}^{-1} )(g_{(n)}\partial_{\beta}g_{(n)}^{-1} )\big] \
$$

In various literature sources (for example, in Rubakov's "Classical gauge fields. Bosons") people often rewrite the surface integral $(2)$ in terms of volume integral:
$$
\tag 3 n = -\frac{1}{16\pi^{2}}\int d^{4}x\text{tr}\big[F_{\mu\nu}\tilde{F}^{\mu\nu}\big],
$$

where $F$ is the gauge field strength and $\tilde{F} = *F$ is its dual. They claim that $(3)$ and $(2)$ are equivalent. But in fact $(2)$ gives non-zero integer result for the pure gauge $(1)$, while $(3)$ vanishes! This can be seen by choosing the 4-dimensional euclidean manifold to be the "cylinder", with the planes being defined by $\tau = \pm \infty$. Then in the gauge $A_{0} = 0$ we obtain from $(3)$
$$
\tag 4 n = n(\tau = \infty) - n(\tau = -\infty)
$$

The precise reason is that we include $\epsilon^{\mu\nu\alpha\beta}\text{tr}\big[\partial_{\mu}F_{\nu\alpha}A_{\beta}\big]$ term in the action when converting the surface integral into the volume integral.

So why do people say that $(2)$ and $(3)$ are equivalent?

asked Jan 13, 2017 in Theoretical Physics by NAME_XXX (1,060 points) [ revision history ]
edited Jan 14, 2017 by NAME_XXX

Too bad this got closed. Many readers of the standard physics textbooks share this confusion, or should share it if they really try to check the text. Here is an expository explanation of what is really going on: SU(2)-instantons from the correct maths to the traditional physics story

@UrsSchreiber I reopend it (you could have done this too), as I dont know why the author closed his nice question. Maybe it was a misclick (?) ...

2 Answers

+ 2 like - 0 dislike

I think by "equivalent" they probably meant your equation (4). The two n's you defined in (2) and (3) are not the same: the first is a Chern-Simons number $n_{CS}$ of some vacuum, the second is the instanton number $n_{ins}$. If we consider a vacuum to vacuum transition due to instantons, each vacuum with its own $n_{CS}$, then the $n_{CS}$ and $n_{ins}$ are precisely related by your equation (4), this is a consequence of Stokes theorem.

answered Jan 16, 2017 by Jia Yiyang (2,640 points) [ revision history ]

I want to agree with You, but still have some doubts.

+ 1 like - 0 dislike

Many readers of the standard physics textbooks share this confusion, or should share it if they really try to check the text. Here is an expository explanation of what is really going on: SU(2)-instantons from the correct maths to the traditional physics story

answered Jan 13, 2017 by Urs Schreiber (6,095 points) [ no revision ]

Thank You, it is important to be familiar with correct description of instantons, I'll read. However, does it directly related to my question about different forms of Maurer-Cartan invariant?

As far as I understand, the stories about instantons and about vacuum configurations are different. The reason is that instantons live in stereographically projected space $R^{4} \to S^{4}$ (the latter follows from conformal invariance of Yang-Mills theory and finiteness of the action), while vacuum configurations belonging to non-trivial homotopic class are initially defined as mapping $S^{3} \to G$.

I meant to explain why your (3) does not vanish. Namely the 4-form being integrated is not in fact globally exact on its correct domain of definition, which is \(S^4\). I also meant to explain why the winding number of \(S^3 \to SU(2)\) is just another incarnation of the instanton number.

@UrsSchreiber : Thank You. But how exactly this prevents me to ensure that the expression $(3)$ vanishes after substituting the vacuum solution $(1)$? The fact that it is defined only on $S^{3}$?

In the entry that I pointed to there is meant to be explanation of how you may choose this "vacuum configuration" locally, but not globally on the 4-sphere.

But what to do with the expression $(4)$? How to interpret it as the winding number of the vacuum gauge configuration?

As I meant to have explained, you can not assume that the 4d space is a cyclinder. Instead you need to take it to be the 4-sphere.

Not sure what Blalaton is meaning to make fun of, but indeed instantons are seen in computer lattice models, see for instance Gruber 13, especially sections 5 and 7

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsO$\varnothing$erflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...