# Anderson-Higgs mechanism for the (non-relativistic) $U(1)$ gauge theory under the unitarity gauge

+ 2 like - 0 dislike
102 views

On Page 138, Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons by Xiaogang Wen, when he demonstrates the Anderson-Higgs mechanism for the $U(1)$ gauge theory, he starts with the general (real time) Lagrangian

$${\cal{L}} ~=~ \frac{i}{2}\left(\varphi^*(\partial_t + iA_0)\varphi -\varphi(\partial_t - iA_0)\varphi^*\right) - \frac{1}{2m} |(\partial_i +i A_i) \varphi|^2$$ $$+ \mu |\varphi|^2 -\frac{V_0}{2}|\varphi|^4 + \frac{1}{8\pi e^2}(\mathbf{E}^2 -\mathbf{B}^2), \tag{3.7.5}$$ with $c=1$. (I wonder why this is the correct non-relativistic form because in my derivation I always have a term $A_0^2|\phi|^2/2m$.)

Then he chooses the gauge such that $\varphi$ is real (unitarity gauge according to Peskin and Schroeder) and obtains

$${\cal{L}} ~=~ -A_0 \phi^2 - \frac{1}{2m} (\partial_i \phi)^2 -\frac{\phi^2}{2m}A_i^2 + \mu \phi^2 -\frac{V_0}{2}\phi^4$$ $$+ \frac{1}{8\pi e^2}(\mathbf{E}^2 -\mathbf{B}^2).\tag{3.7.16b}$$

He claims that if we have $\phi = \phi_0 +\delta \phi$ and integrate the small fluctuation $\delta \phi$, we can get

$${\cal{L}} ~=~ \frac{A_0^2}{2V_0} -\frac{\rho A_i^2}{2m} + \frac{1}{8\pi e^2}(\mathbf{E}^2 -\mathbf{B}^2).\tag{3.7.17}$$

I am curious what approximations he has done to get here.

Any help is appreciated.

This post imported from StackExchange Physics at 2015-04-15 10:43 (UTC), posted by SE-user L. Su
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.