• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

174 submissions , 137 unreviewed
4,308 questions , 1,640 unanswered
5,089 answers , 21,602 comments
1,470 users with positive rep
635 active unimported users
More ...

  Wess-Zumino terms and their locality in a case of the presence of Goldstone bosons

+ 2 like - 0 dislike

Suppose the simple theory with chiral fermions possessing non-trivial gauge anomalies cancellation (it is given here):
S = \int d^4 x \big(\bar{\psi}i\gamma_{\mu}D^{\mu}_{\psi}\psi + \bar{\kappa}i\gamma_{\mu}D^{\mu}_{\kappa}\kappa\big),
D^{\mu}_{\psi} = \partial^{\mu} - iA^{\mu}_{L}P_{L} -iA^{\mu}_{R}P_{R}, \quad D^{\mu}_{\kappa} = \partial^{\mu}+iA^{\mu}_{L}P_{L} +iA^{\mu}_{R}P_{R}
Although separately $\psi, \kappa$ sectors are anomalous, together their gauge anomalies are cancelled:
\partial_{\mu}J^{\mu}_{L/R,\psi, \kappa} = \pm \frac{1}{96\pi^2}\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}^{L/R}F_{\alpha\beta}^{L/R}, \quad \partial_{\mu}(J^{\mu}_{L/R,\psi}-J^{\mu}_{L/R,\kappa}) = 0
Lets generate the mass for $\kappa$ fermion (by using spontaneous symmetry breaking with higgs singlet $fe^{i\varphi}$ with infinite mass for $f$) and integrate it out  in the limit $m_{\kappa}\to \infty$. Corresponding effective field theory has to be free from anomalies, so there must be (possibly non-local) a term $\Gamma[A_{L}, A_{R},\varphi ]$ reproducing the anomalous structure of the $\kappa$ sector; it is called the Wess-Zumino term. It is possible to write it explicitly, and it turns out that this it is local (a polynomial in $A, \varphi$ and their derivatives):

\Gamma_{\text{WZ}} = \frac{1}{24\pi^{2}}\int d^{4}x\epsilon^{\mu\nu\alpha\beta}\bigg(A^{L}_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{L} + A^{L}_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{R}+

$$+\frac{\varphi}{f}\big( \partial_{\mu}A_{\nu}^{L}\partial_{\alpha}A^{L}_{\beta}+\partial_{\mu}A^{R}_{\nu}\partial_{\alpha}A_{\beta}^{R}+\partial_{\mu}A_{\nu}^{L}\partial_{\alpha}A_{\beta}^{R}\big) \bigg)

However, as I know, the anomaly (at least in theories with chiral fermions) is the local expression given by the variation of the non-local action. So where the non-locality is hidden?

asked Dec 22, 2016 in Theoretical Physics by NAME_XXX (1,055 points) [ revision history ]
recategorized Dec 22, 2016 by Dilaton

Please log in or register to answer this question.

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights