# How do I show that there is no supersymmetry breaking in two-dimensional $U(1)$ gauge theory

+ 4 like - 0 dislike
293 views

My question is regarding supersymmetric $U(1)$ gauge theory in two dimensions. In particular, I am interested in the supersymmetry which is preserved by Witten's topological A-twisting. It seems to me that quantum corrections result in an anomaly that breaks this supersymmetry. However, I doubt that this is accurate because I have not seen this in the literature, and am trying to show that there is in fact no anomaly.

On a worldsheet parametrized by $x^1$ and $x^2$, the action is \begin{equation} \begin{aligned} S=\frac{1}{2\pi}{1 \over 2{e}^2}\int d^2x\Big(( {F}_{12})^2 +\partial_{\mu} {\sigma} \partial^{\mu} \overline{ {\sigma}} -( {D} )^2 - {i } \overline{ {\lambda}}_{+} ({\partial_-}) {\lambda}_{+} -{i } \overline{ {\lambda}}_{-} ({\partial_+}) {\lambda}_{-} \Big), \end{aligned} \end{equation} (where $\partial_{\pm}=i\partial_2\pm \partial_1$, and $d^2x=dx^1dx^2$ with $x^2$ understood to be the Euclidean time direction) and it is invariant under the following supersymmetry transformations, generated by the supercharge $Q_A$ \begin{align} \delta_{ {Q}_A}& {A}_{1} \ =\ \frac{i\epsilon( \overline{ {\lambda}}_{+}-{ {\lambda}}_{-})}{2} & \delta_{ {Q}_A}& {\lambda}_{-} \ =\ \, \epsilon\partial_- {\sigma} \nonumber\\ \delta_{ {Q}_A}& {A}_{2 } \ =\ \frac{\epsilon( \overline{ {\lambda}}_{+}+{ {\lambda}}_{-})}{2} & \delta_{ {Q}_A}& \overline{ {\lambda}}_{+} \ =\ \, \epsilon\partial_{+} {\sigma} \nonumber \\ \delta_{ {Q}_A}& {\sigma} \ = \ 0 & \delta_{ {Q}_A}& \overline{ {\lambda}}_{-} \ = \ -i\epsilon( {F}_{12}+ {D} ) \nonumber \\ \delta_{ {Q}_A}& \overline{ {\sigma}} \ = \ - i\epsilon (\overline{ {\lambda}}_{-} + {\lambda}_{+}) & \delta_{ {Q}_A}& {\lambda}_{+} \ = \ i\epsilon( {F}_{12}+ {D} )\nonumber \\ \delta_{ {Q}_A}& {D} =\frac{1}{2}\epsilon(\partial_-\overline{ {\lambda}}_{+}-\partial_+{ {\lambda}}_{-}). \end{align} We need to fix a gauge in order to quantize the theory, so we shall choose the Lorentz gauge \begin{equation} \langle \psi '| \partial_{\mu} {A} ^{\mu}|\psi \rangle=0 \end{equation} (where $|\psi \rangle$ and $|\psi' \rangle$ are physical states) by including the following BRST gauge fixing action \begin{equation}\label{gfaction} S_{BRST}=\frac{1}{2\pi}\frac{1}{2 {e} ^2}\int d^2x(-iB \partial_{\mu} {A}^{\mu} -(B )^2+\partial_{\mu} {b} \partial^{\mu} {c} -\frac{i\partial_2 {b} }{2}({ {\lambda}}_{-}+\overline{ {\lambda}}_{+})-\frac{\partial_1 {b} }{2}({ {\lambda}}_{-}-\overline{ {\lambda}}_{+})), \end{equation} where $b$ and $c$ are fermionic ghost fields, while $B$ is an auxiliary bosonic field. Now, both $S$ and $S_{BRST}$ are invariant under the corrected supersymmetry transformations generated by $\hat{Q}_A=Q_A+ Q_{BRST}$: \begin{align} \delta_{\hat{Q}_A}& {A}_{1} \ =\ \frac{i\epsilon( \overline{ {\lambda}}_{+}-{ {\lambda}}_{-})}{2} +i\epsilon\partial_{1} {c} & \delta_{\hat{Q}_A}& {\lambda}_{-} \ =\ \, \epsilon\partial_- {\sigma} \nonumber\\ \delta_{\hat{Q}_A}& {A}_{2 } \ =\ \frac{\epsilon( \overline{ {\lambda}}_{+}+{ {\lambda}}_{-})}{2} +i\epsilon\partial_{2} {c} & \delta_{\hat{Q}_A}& \overline{ {\lambda}}_{+} \ =\ \, \epsilon\partial_{+} {\sigma} \nonumber \\ \delta_{\hat{Q}_A}& {\sigma} \ = \ 0 & \delta_{\hat{Q}_A}& \overline{ {\lambda}}_{-} \ = \ -i\epsilon( {F}_{12}+ {D} ) \nonumber \\ \delta_{\hat{Q}_A}& \overline{ {\sigma}} \ = \ - i\epsilon (\overline{ {\lambda}}_{-} + {\lambda}_{+}) & \delta_{\hat{Q}_A}& {\lambda}_{+} \ = \ i\epsilon( {F}_{12}+ {D} )\nonumber \\ \delta_{\hat{Q}_A}& {D} =\frac{1}{2}\epsilon(\partial_-\overline{ {\lambda}}_{+}-\partial_+{ {\lambda}}_{-}) \end{align} \begin{equation} \begin{aligned} \delta_{\hat{Q}_A} b &=\epsilon B \\ \delta_{\hat{Q}_A} c &=-\epsilon {\sigma} \\ \delta_{\hat{Q}_A} B &=0. \end{aligned} \end{equation} In particular, $\delta_{\hat{Q}_A}^2=0$ on all fields. The Noether charge $\hat{Q}_A$ is computed to be \begin{equation} \begin{aligned} \hat{Q}_A=&\frac{1}{2\pi}\int dx^1\Big(- \frac{i}{{e} ^2 } {F}_{12}\big(\frac{(\overline{ {\lambda}}_{+}-{ {\lambda}}_{-})}{2} +\partial_1 {c}\big) \\& - \frac{1}{2 {e} ^2}(\overline{ {\lambda}}_{-}+{ {\lambda}}_{+})i\partial_2 {\sigma} + \frac{1}{2 {e} ^2}(\overline{ {\lambda}}_{-}-{ {\lambda}}_{+c})\partial_1 {\sigma} %-\frac{i}{2}\sum_j^N\sum ^k\sum_d^k {Q}_{jc}v^j_d%\partial_1\tic (\theta^d-\overline{\theta}^d) \\& +\frac{1}{2 {e} ^2}B\big(\frac{-i(\overline{ {\lambda}}_{+}+{ {\lambda}}_{-})}{2}+\partial_2 {c} \big)+\frac{1}{2 {e} ^2}\partial_2b {\sigma} \Big) \end{aligned} \end{equation}

Then, using the nonzero canonical commutation relations \begin{equation} \begin{aligned} \lbrack {\sigma} (x^1), \frac{1}{2 {e}^2}\partial_2\overline{ {\sigma}}(y^1) \rbrack&= 2\pi \delta(x^1-y^1)\\ \{ {\lambda}_{\pm}(x^1),\frac{1}{2 {e}^2} \overline{ {\lambda}}_{\pm }(y^1)\}&=2\pi \delta(x^1-y^1)\\ \lbrack {A}_{1}(x^1),-\Big(\frac{1}{ {e} ^2} {F}_{12}(y^1) \Big)\rbrack&=2\pi \delta(x^1-y^1)\\ %\lbrack {A}_{1c}(x^1),-\frac{1}{2 % {e}^2}\big(2 {F}_{12d}(y^1)-i\sum_j^N \sum_e^k % {Q}_{jd} v^j_e \textrm{Im}(\theta^e(y^1))\big)%\rbrack&=2\pi \delta(x^1-y^1)\\ \lbrack {A}_{2}(x^1),\frac{1}{2 {e}^2}(-iB(y^1))\rbrack&=2\pi \delta(x^1-y^1)\\ \{ {b} (x^1),\frac{1}{2 {e}^2}\big(\partial_2 {c}(y^1)\big)\}&=2\pi \delta(x^1-y^1)\\ \{ {c} (x^1),\frac{1}{2 {e}^2}\big(\partial_2 {b}(y^1)\big)\}&=2\pi \delta(x^1-y^1),\\ \end{aligned} \end{equation} we find \begin{equation}\label{anomaly} \begin{aligned} \hat{Q}_A^2=\frac{1}{2}\{\hat{Q}_A,\hat{Q}_A\} %=&\frac{1}{2}\int dx^1\int dy^1\{\hat{J}^2(x^1),\hat{J}%^2(y^1)\} =&\frac{1}{2\pi}\int dx^1 \Big( \frac{i}{ {e} ^2 } {F}_{12}\partial_1 {\sigma} -\frac{i}{ {e} ^2 } {F}_{12}\partial_1 {\sigma} \\& - \big(\frac{1}{2 {e} ^2}\big)\partial_2 {\sigma} B \Big) \\ =&\frac{1}{2\pi}\int dx^1 \Big( - \big(\frac{1}{2 {e} ^2}\big)\partial_2 {\sigma} B \Big) \end{aligned} \end{equation} Now, if $\hat{Q}^2_A$ is nonzero, there can be no ground states annihilated by $\hat{Q}_A$, and therefore supersymmetry is broken. I suspect that this is not true in the case at hand, but there is still a term proportional to $B$ present. This term is actually the generator of time-dependent gauge symmetries, i.e., it generates the gauge transformations of $A_2$. Why should it annihilate physical states?

This post imported from StackExchange Physics at 2017-02-26 23:00 (UTC), posted by SE-user Mtheorist

It closes off-shell, since the auxiliary field $D$ is present. However, since $B$ is proportional to $\partial_{\mu}A^{\mu}$ via equations of motion, and since the latter vanishes via Lorentz gauge, maybe we still can have $B=0$.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOve$\varnothing$flowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.