• Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.


PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback


(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,075 questions , 2,226 unanswered
5,348 answers , 22,757 comments
1,470 users with positive rep
818 active unimported users
More ...

  How exactly are the different motions of only one kind of fundamental string assumed to give rise to the spectrum of elementary particles we observe?

+ 3 like - 0 dislike

In string theory, it is assumed that all particles can be described as quanta corresponding to the excitations of only one kind of fundamental string.

How can in principle the different motion patterns of one kind of string give rise to the whole particle zoo in the standard model? How are the different properrties, that characterize an elementary particle such as their

  • mass
  • spin
  • charges

encoded in the allowed motion pattterns of the string?

(I know that the vacuum corresponding to our standard model can not be uniquely identified at present, but I am interested in the general concepts and ideas that should in principle give rise to the different characteristics of the particles we observe.)


This is just an attempt to extract and reask the useful part of this now a bit too overloaded original question.

This post imported from StackExchange Physics at 2014-03-12 15:41 (UCT), posted by SE-user Dilaton
asked Nov 19, 2012 in Theoretical Physics by Dilaton (6,240 points) [ no revision ]

1 Answer

+ 3 like - 0 dislike

A string is a "particle with a complicated internal structure". To see the rough emergence of particle species, you may start with a hydrogen-string analogy. The hydrogen atom is a bound state of a proton and an electron. It may be in various energy eigenstates described by the quantum numbers $(n,l,m)$. They have a different angular momentum and its third polarization and different energies that mostly depend on $n$.

It's similar for a string. A string may be found in various states. The exact "spectrum" i.e. composition of these states depends on the background where the string propagates and the type of string theory (more precisely, the type of the string theory vacuum). But for the rough picture, consider string theory in the flat space, e.g. in the 26-dimensional spacetime. Take an open string. Its positions $X^\mu(\sigma)$ may be Fourier decomposed and each of the Fourier modes, labeled by a positive integer $n$, produces coordinates of a 24-dimensional harmonic oscillator.

So an open string is equivalent to a $24\infty$-dimensional harmonic oscillator (yes, it's twenty-four times infinity). Each of the directions in this oscillator contributes $Nn/ \alpha'$ to the squared mass $m^2$ of the resulting particle where $N$ is the total excitation level of the harmonic oscillators that arise from the $n$-th Fourier mode. At any rate, the possible values of the squared mass $m^2$ of the particle are some integer multiples of $1/\alpha'$. This dimensionful parameter $1/\alpha'$ is also called $1/l_{string}^2=m_{string}^2$.

The ground state of the string, $|0\rangle$ of the harmonic oscillator, is a tachyonic particle with $m^2=-1/\alpha'$ in the case of bosonic strings. These tachyons are filtered away in the superstring. The first excited state of an open string is $\alpha^\mu_{-1}|0\rangle$ which carries one spacetime Lorentz vector index so all these states behave as a vector with $m^2=0$. They give you a gauge boson. And then there are massive modes with $m^2\gt 0$. Closed strings of similar masses have twice larger number of indices, so for example, the massless closed string states inevitably produce a graviton.

So different masses of the resulting particles arise from different values of $Nn$ – and the very fact that the values may be different for different excitations is analogous to the same feature of the hydrogen atom or any other composite particle in the world. In string theory, however, one may also produce states with different values of the angular momentum – also somewhat analogous to the hydrogen atom which is a sufficient model – or different values of the electric charge and other charges.

For example, in some Kaluza-Klein-like vacua, the number of excitations of $X^5_{n}$, the Fourier modes of the (circular) fifth dimension $X^5$, will be interpreted as the electric charge and it will behave as the electric charge in all physical situations, too. There are other ways how $U(1)$ electric-like charges and other charges arise in string theory. See e.g. this popular review


of ways how Yang-Mills gauge groups and charges may emerge from different formulations and vacua of string theory. If even this review is too technical, you will have to be satisfied with the popular Brian-Greene-like description stating that particles of different mass, spin, or charges emerge from strings vibrating in different ways. I am sort of puzzled about your question – and afraid that my answer will be either too simple or too off-topic given your real question – because you must have heard and read these basic insights about string theory about hundreds of times already.

This post imported from StackExchange Physics at 2014-03-12 15:41 (UCT), posted by SE-user Luboš Motl
answered Nov 19, 2012 by Luboš Motl (10,278 points) [ no revision ]
Hi Lumo, thanks for this nice answer to this originally not my question :-). Please dont be disappointed or annoyed about it, the puzzle has a simple solution. My question here is just an attempt to reask the useful enough for this site content if this question from another user called Neo. In the corresponding metadiscussion, I asked the mods to associate this question with Neo's account since it is not my own.

This post imported from StackExchange Physics at 2014-03-12 15:41 (UCT), posted by SE-user Dilaton
Many people here on physics SE were interested in the answer to this only reasonable question buried in the unsuccessful post. They asked for a popular anwer and they should perfectly like what you explain here. Cheers

This post imported from StackExchange Physics at 2014-03-12 15:41 (UCT), posted by SE-user Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification

user contributions licensed under cc by-sa 3.0 with attribution required

Your rights