T-duality is a canonical way to go from SO(32), or Spin(32) to E8×E8 and back. This is mentioned in some answers, e.g. T-duality between E8×E8 and Spin(32)/Z2 heterotic strings at the σ-model level
Is there some way to link both groups using only representation theory? For instance, SO(32) is decomposed to SU(16) or to SO(16)xSO(16) looks respectively as 496=(255)0⊕(1)0⊕(120)4⊕(¯120)−4
496=(16,16)⊕(120,1)⊕(1,120)
very much as two copies of E8, and of course we have E8×E8 itself branching to SO(16) as 248⊕248=(128′)⊕(128′)⊕(120)⊕(120)
And also, if we have built the 496 of SO(32) as a symmetrized pairing of 16 + 16 "particles and antiparticles", it can be further splitted to 256+240, which is a more informal statement of the above branchings, and again looks as two copies of SO(16).
This kind of coincidencies is usually mentioned as lore (say Baez' TWF and similar) but rarely more substance is given. Is there more content here, thus? Such as actually defining E8 as some action in those vector spaces that are also representations of subgroups of SO(32)? And viceversa?
Also, is SO(16)×SO(16) the only maximal common subgroup useful for this sort of descriptions?
This post imported from StackExchange Physics at 2017-08-11 12:39 (UTC), posted by SE-user arivero