I have the full Polyakov sigma model action:
S=SP+SB+SΦ=−14πα′[∫Σd2σ√−ggab∂aXμ∂bXνGμν(X)++ϵabBμν(X)∂aXμ∂bXν+α′Φ(X)R(2)(σ)].
and I want to derive the classical equations of motion by varying X=X+δX. I am confused as to what to do with the last term. It is of a higher power of α′, so I am thinking it can just be ignored, as it's variation will be of a higher order. Is this thinking correct?
Does this question even make sense, as I'm trying to derive classical equations from a sigma-model, which as far as I have seen, is used when quantizing the string?