I am surprised no one has mentioned Lipkin yet. His "Lie Groups for Pedestrians" uses notation that is not too out of date, since it was written in the early 60s. He covers the use of group theory in nuclear physics, elementary particle physics, and in symmetry-breaking theories. From there, it is only a small jump to more modern theories.
Georgi's book (mentioned above) may be even better, but it is awfully pricey: as a Dover Press book, Lipkin's is quite cheap and easily available. It can even be downloaded as a PDF file from 4shared. Or bought as an e-book from Google. Even the Preview on Google is not bad, being surprisingly close to complete.
Lipkin does assume the readers knows quantum mechanics at about the sophomore physics major level, since the quantum-mechanical angular momentum operator is basic to his whole presentation; he also assumes familiarity with Dirac's bra and ket notation. But I am sure that is not asking too much.
Heine's "Group Theory in Quantum Mechanics" and Weyl's "The Theory of Groups and Quantum Mechanics" are also classics, but their notation really is old. And both books are too old to cover use of group theory with QCD or symmetry breaking. But both these books explain the philosophy of the use of groups in QM, which later authors seem to usually assume you already know. Heine also includes a lot more than most about the application of finite and 'point' crystallographic groups. But he does still seem to take a more mathematically abstrat approach than most physicists need: as Lipkin points out, the interests of a physicist and those of a mathematician in group theory really are different: as an example of the difference, Lipkin even mentions the rank of Lie algebras without ever defining it:(
This post imported from StackExchange Physics at 2014-05-04 07:46 (UCT), posted by SE-user Matt J.