Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,794 comments
1,470 users with positive rep
820 active unimported users
More ...

  Cosets for lie groups

+ 5 like - 0 dislike
1669 views

I am looking for a general way of determining cosets for $(G\times H)/H$, where $G$ and $H$ are Lie groups.

For example what are the cosets $(SU(3)\times SU(2))/SU(2)$. Is there a general method of determining it? (I am actually trying to use it to find the triviality of a fiber bundle whose base space is Grassmann and fiber is $O(n)$.)

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user user44895
asked Jun 1, 2014 in Mathematics by user44895 (35 points) [ no revision ]
@Danu: I agree it's off-topic, but the question is relevant for certain topics in quantum field theory. [At author]: Perhaps you could somehow link it to physics by motivating the question with a reference to some physics problem, c.f. spontaneous symmetry breaking?

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user JamalS
You might be interested in this link: physicsoverflow.org/14447/coset-space-of-lie-groups

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user Hunter
@HUNTER:It is different actually. I have asked something same before [1]:physics.stackexchange.com/q/110148

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user user44895
@user44895 no, I don't think so. The question you refer to is about the intuition of a coset space, whereas the link I refer to is about how to calculate that in a more general way. It might be worthwile for you to read the answer given in that link.

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user Hunter

1 Answer

+ 3 like - 0 dislike

The way the question is phrased is a little ambiguous. How does $H$ sit inside $G\times H$ as a subgroup? If it sits inside it in the canonical way as $\{1\}\times H$, then the space of cosets is canonically isomorphic to $G$ and each coset is simply $G \times \{g\}$ for $g$ an element of $H$. I.e., for each element of H there is a different coset. There is nothing to do.

Now if $H$ sits inside a little differently, as it might in your example, since $H\subseteq G$ also, the concrete forms of the cosets will differ. But the picture will look the same, the coset space will be isomorphic to the above, it's just that the cosets will concretely be different.

The main issue is whether you have $H$ sitting inside $G\times H$ as a normal subgroup or not. In the first case above, it is normal, and the coset space happens to be a group itself. But if you have put SU(2) inside of SU(3) in any of the infinitely many diferent ways, then it is not a normal subgroup.

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user joseph f. johnson
answered Jun 1, 2014 by joseph f. johnson (500 points) [ no revision ]
A simple version would be in which case (cases) $(G \times H)/H$ will not be different from $G$.

This post imported from StackExchange Physics at 2014-06-01 18:58 (UCT), posted by SE-user user44895

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...