Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Bessel function recursion relation

+ 1 like - 0 dislike
1620 views

I'm reading a paper and the following set of radial equations is derived:

$ -i \lbrack \partial_r + \frac{1}{r} \left( \frac{1}{2} - \nu \right) \rbrack u(r) = \pm k v(r) $

$ -i \lbrack \partial_r + \frac{1}{r} \left( \frac{1}{2} + \nu \right) \rbrack v(r) = \pm k u(r) $

Where $\nu$ is some constant whose meaning doesn't really matter here. The authors state that the left-hand sides of these equations are a version of the recursion relations for Bessel functions, so the solutions have the form:

$ \left( \begin{array} &u(r) \\ v(r) \end{array} \right) = \left( \begin{array} &(i \epsilon)^{-1/2} J_{\epsilon (\nu - 1/2)}(kr) \\ \pm (i \epsilon)^{-1/2} J_{\epsilon (\nu + 1/2)}(kr) \end{array} \right)$

and $\epsilon = \pm 1$.

No derivation is provided and I don't understand this step. Could someone briefly outline the method used here or provide some helpful reading material? I haven't had any luck so far.

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Calavera
asked Apr 13, 2013 in Mathematics by Calavera (5 points) [ no revision ]
Have you checked the book of Watson, "A Treatise on the theory of Bessel functions"?

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Norbert Schuch
@NorbertSchuch Thanks, I'll see if I can find it. Part of the issue is that I'm not on my University campus for the next few days so I don't have access to the library.

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Calavera
You might be interested in this.

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user J. M.

2 Answers

+ 0 like - 0 dislike

You can verify the correctness of the solutions by using the two recursion relations $$ J_n(z) = \frac{z}{2n}(J_{n-1}(z)+J_{n+1}(z)) $$ and $$ \frac{\mathrm d}{\mathrm dz}J_n(z) = \frac{J_{n-1}(z)-J_{n+1}(z)}{2} $$ which you can find e.g. on Wikipedia.

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Norbert Schuch
answered Apr 13, 2013 by Norbert Schuch (290 points) [ no revision ]
Thanks, I'll give it a try.

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Calavera
I get that the relative phase between $u$ and $v$ in the solution should be $\pm i$ rather than $\pm 1$, but except for that, it works out. (Indeed, using the fact that everything else can be chosen real, the relative phase must be $\pm i$.)

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user Norbert Schuch
+ 0 like - 0 dislike

It is in fact just a systems of linear first-order ODEs.

$\begin{cases}-i\left[\partial_r+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\right]u(r)=\pm kv(r)\\-i\left[\partial_r+\dfrac{1}{r}\left(\dfrac{1}{2}+\nu\right)\right]v(r)=\pm ku(r)\end{cases}$

$\begin{cases}\partial_ru(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)u(r)=\pm kiv(r)\\\partial_rv(r)+\dfrac{1}{r}\left(\dfrac{1}{2}+\nu\right)v(r)=\pm kiu(r)\end{cases}$

$\therefore\partial_{rr}u(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{2}-\nu\right)u(r)=\pm ki\partial_rv(r)$

$\partial_{rr}u(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{2}-\nu\right)u(r)=\pm ki\left(-\dfrac{1}{r}\left(\dfrac{1}{2}+\nu\right)v(r)\pm kiu(r)\right)$

$\partial_{rr}u(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{2}-\nu\right)u(r)=\mp\dfrac{ki}{r}\left(\dfrac{1}{2}+\nu\right)v(r)-k^2u(r)$

$\partial_{rr}u(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{2}-\nu\right)u(r)=-\dfrac{1}{r}\left(\dfrac{1}{2}+\nu\right)\left(\partial_ru(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)u(r)\right)-k^2u(r)$

$\partial_{rr}u(r)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{2}-\nu\right)u(r)=-\dfrac{1}{r}\left(\dfrac{1}{2}+\nu\right)\partial_ru(r)-\dfrac{1}{r^2}\left(\dfrac{1}{4}-\nu^2\right)u(r)-k^2u(r)$

$\partial_{rr}u(r)+\dfrac{1}{r}\partial_ru(r)+\left(k^2-\dfrac{1}{r^2}\left(\nu^2-\nu+\dfrac{1}{4}\right)\right)u(r)=0$

$r^2\partial_{rr}u(r)+r\partial_ru(r)+\biggl(k^2r^2-\left(\nu-\dfrac{1}{2}\right)^2\biggr)u(r)=0$

$u(r)=\begin{cases}C_1J_{\nu-\frac{1}{2}}(kr)+C_2Y_{\nu-\frac{1}{2}}(kr)&\text{when}~\nu-\dfrac{1}{2}\text{is an integer}\\C_1J_{\nu-\frac{1}{2}}(kr)+C_2J_{\frac{1}{2}-\nu}(kr)&\text{when}~\nu-\dfrac{1}{2}\text{is not an integer}\end{cases}$

According to http://people.math.sfu.ca/~cbm/aands/page_361.htm,

$\partial_ru(r)=\begin{cases}-C_1\left(J_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)J_{\nu-\frac{1}{2}}(kr)\right)-C_2\left(Y_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)Y_{\nu-\frac{1}{2}}(kr)\right)&\text{when}~\nu-\dfrac{1}{2}\text{is an integer}\\-C_1\left(J_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)J_{\nu-\frac{1}{2}}(kr)\right)+C_2\left(J_{-\nu-\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)J_{\frac{1}{2}-\nu}(kr)\right)&\text{when}~\nu-\dfrac{1}{2}\text{is not an integer}\end{cases}$

$\therefore v(r)=\begin{cases}\mp\dfrac{i}{k}\left(-C_1\left(J_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)J_{\nu-\frac{1}{2}}(kr)\right)-C_2\left(Y_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)Y_{\nu-\frac{1}{2}}(kr)\right)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)(C_1J_{\nu-\frac{1}{2}}(kr)+C_2Y_{\nu-\frac{1}{2}}(kr))\right)&\text{when}~\nu-\dfrac{1}{2}\text{is an integer}\\\mp\dfrac{i}{k}\left(-C_1\left(J_{\nu+\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\nu-\dfrac{1}{2}\right)J_{\nu-\frac{1}{2}}(kr)\right)+C_2\left(J_{-\nu-\frac{1}{2}}(kr)-\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)J_{\frac{1}{2}-\nu}(kr)\right)+\dfrac{1}{r}\left(\dfrac{1}{2}-\nu\right)(C_1J_{\nu-\frac{1}{2}}(kr)+C_2J_{\frac{1}{2}-\nu}(kr))\right)&\text{when}~\nu-\dfrac{1}{2}\text{is not an integer}\end{cases}$

$v(r)=\begin{cases}\pm\dfrac{i}{k}\left(C_1J_{\nu+\frac{1}{2}}(kr)+C_2Y_{\nu+\frac{1}{2}}(kr)\right)&\text{when}~\nu-\dfrac{1}{2}\text{is an integer}\\\pm\dfrac{i}{k}\left(C_1J_{\nu+\frac{1}{2}}(kr)-C_2J_{-\nu-\frac{1}{2}}(kr)\right)&\text{when}~\nu-\dfrac{1}{2}\text{is not an integer}\end{cases}$

This post imported from StackExchange Mathematics at 2014-06-01 19:31 (UCT), posted by SE-user doraemonpaul
answered Apr 14, 2013 by doraemonpaul (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...