Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)
(Is this your paper?)
Abstract
The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of standard model as a Hamiltonian quantum mechanical theory. In this paper, we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non-perturbative definition by embedding the modified standard model into a SO(10) chiral gauge theory and then putting the SO(10) chiral gauge theory on a 3D spatial lattice with a continuous time. Such a non-perturbatively defined standard model is a Hamiltonian quantum theory with a finite-dimensional Hilbert space for a finite space volume. Using the defining connection between gauge anomalies and the symmetry-protected topological orders, we show that any chiral gauge theory can be non-perturbatively defined by putting it on a lattice in the same dimension, as long as the chiral gauge theory is free of all anomalies.