Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  Derive SUSY transformation for gauge multiplet

+ 3 like - 0 dislike
947 views

How can the supersymmetrie transformation $\delta A_\mu = \frac{1}{2} \overline{\epsilon}\gamma_\mu \psi $ be derived from the susy algebra ( or group ).
Where $ (A_\mu , \psi_\alpha)$ are in a gauge multiplet and $\overline{\epsilon}$ is the susy parameter.

Under which representation transforms $A_\mu$ under the susy algebra ? Under Lorentz it would be in the vector repr. so $ A_\mu^\prime \rightarrow g A_\mu$ and g can be expand to find $\delta A_\mu$. Is something like this possible for the supersymmetrie transformation ? And what is the group element g?

Is the transformation only valid for chiral $\psi_\alpha$ or represents $\psi$ in the transformation a dirac spinor ?

asked Feb 5, 2016 in Theoretical Physics by LQD (35 points) [ no revision ]

1 Answer

+ 5 like - 0 dislike

I will give an answer for the simpler case of the free Wess-Zumino (WZ) model and then you can try to do the same for your SUSY Yang-Mills theory. The free WZ model has the following Lagrangian

$$ \mathcal{L} = \partial^{\mu} \phi \partial_{\mu} \phi^* + i\psi^{\dagger} \bar{\sigma} \partial_{\mu}\psi $$

Let us consider the infinitesimal SUSY transformations $\phi \to \phi + \delta \phi$ and $\psi \to \psi + \delta \psi$. Now, SUSY is the symmetry that says that under a small variation the bosons go to fermions and the fermions go to bosons. Therefore it is only natural that the change of the boson is a fermion. We set $\delta \phi = \epsilon^{\alpha}\psi_{\alpha} = \epsilon \psi$, where $\alpha$ are sponsorial indices and as you see this makes sense in terms of dimensions as well if we require that $\epsilon$ is an infinitesimal Grassman variable with dimension -1/2.  It is not hard to show that $\delta \phi^* = \epsilon_{\dot{\alpha}}^{\dagger} \psi^{\dagger \,\dot{\alpha}} = \epsilon^{\dagger} \psi^{\dagger}$. Then one can ask, what is a small SUSY variation of the Lagrangian? The answer is 

$$ \delta \mathcal{L}= \epsilon \partial^{\mu} \psi \partial_{\mu} \phi^{*} + \epsilon^{\dagger} \partial^{\mu}\psi^{\dagger} \partial_{\mu} \phi $$ 

Now we want $\delta \mathcal{L}_s$ to be zero. But since the the first term involves two derivatives and the first one only one it means we must modify the SUSY transformation for the fermion field. To do it properly we need the following transformation

$$ \delta \psi_{\alpha} = -i(\sigma^{\nu} \epsilon^{\dagger})_{\alpha} \partial_{\nu} \phi\,\,\, $$

and

$$ \delta \psi_{\dot{\alpha}}^{\dagger} = i(\epsilon \sigma^{\nu})_{\dot{\alpha}} \partial_{\nu}\phi^{*} $$

Then the change in $\mathcal{L}$ is given by

 $$ \delta \mathcal{L} =  -\epsilon \sigma^{\nu} \partial_{\nu} \phi^* \bar{\sigma}^{\mu} \partial_{\mu} \psi+ \psi^{\dagger} \bar{\sigma}^{\mu} \sigma^{\nu} \epsilon^{\dagger}  \partial_{\mu} \partial_{\nu} \phi$$.

Then, after performing a few integrations by parts, you can see that all terms cancel out, giving $\delta \mathcal{L}=0$. 

The SUSY transformations are not derived by the SUSY algebra, rather than the opposite. Now, since we know what the SUSY transformations are we ask ourselves what happens with the commutator of two SUSY transformations $\delta_1$ and $\delta_2$? Then we consider 

$$ [\delta_1, \delta_2] = -i(\epsilon_1\sigma^{\mu} \epsilon_2^{\dagger} - \epsilon_2 \sigma^{\mu}\epsilon_1^{\dagger} ) \partial_{\mu} $$

which as you can see it really resembles the equation 

$$ [Q_{\alpha}, {Q}_{\beta}^{\dagger}] \backsim \sigma^{\mu}P_{\mu} \delta_{\alpha \beta}$$.

Then we can do the same, find the commutator of two SUSY transformations for the fermion. If we do so, and after using the Fiery identity we find a similar expression, i.e. a proportionality to the momentum operator. This is why we say that the commutator of two SUSY transformations results into a boost. Additionally it shows that the SUSY algebra closes on-shell. 

Now, all you have to do is to consider instead of a scalar field $\phi$, a vector $A_{\mu}$. The idea is the same, except that for in both cases when you want to go off-shell you need to consider additional auxiliary field in order the SUSY algebra to be closed. The details can be found in many books and references like Martin's lecture notes, Wess and Bagger's book, John Terning's book, Van Proyen's Supergravity book and so on. But in any case, the generalisation to SUSY Yang-Mills is straight forward. 

P.S. By the way, under SUSY the gauge field transforms under representations of the corresponding super-Lie algebra, not just the SUSY algebra. Each member of the multiplet must transform in the same gauge representation, but I am not really sure if you do consider only representations for SUSY neglecting the gauge part. 

answered Feb 5, 2016 by conformal_gk (3,625 points) [ revision history ]

Nice!

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...