The Rarita-Schwinger field is a field with a 1-form and a spinor index, $\psi_\mu^a$. It usually has a gauge symmetry $\delta \psi_\mu^a = \partial_\mu \eta^a$ parametrized by an arbitrary spinor $\eta^a$. I want to understand this field more like a gauge field. Does it have holonomy? Can I compute Wilson loops? Surface operators?