Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,798 comments
1,470 users with positive rep
820 active unimported users
More ...

  On the geometric Langlands correspondence

+ 6 like - 0 dislike
838 views

There has been a significant amount of work in recent years by many mathematical physicists viz. Witten, Kapustin etc. on understanding the geometric Langlands and its relation to non-perturbative effects string theory and gauge theory.

My questions are as follows:

a) What is the physical interpretation of the various conjectures in the original Langlands programme?

b) The geometric Langlands has an interpretation in terms of the S-duality of the gauge theory and also can be used to study mirror symmetries of $2d$ and $4d$ gauge theories. (Witten, Kapustin) Is this $2d$ - $4d$ gauge theory appearance a coincidence or is it related to exact non-perturbative symmetries in which a $6d$ theory is reduced to a $2d$ or a $4d$ theory in various limits? In other words, what can the geometric Langlands tell us about AGT and exact symmetries? In particular, what theories are related by mirror symmetry in this case?

c) What can one learn about non-Abelian gauge theories from the Geometric Langlands?

This post imported from StackExchange Physics at 2017-04-23 15:20 (UTC), posted by SE-user Eh-whaaa
asked Apr 19, 2017 in Theoretical Physics by Eh-whaaa (55 points) [ no revision ]
math.harvard.edu/~gaitsgde/Jerusalem_2010/MathPhysicsSeminar‌​/…

This post imported from StackExchange Physics at 2017-04-23 15:20 (UTC), posted by SE-user user81003

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...