Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,106 questions , 2,251 unanswered
5,400 answers , 23,019 comments
1,470 users with positive rep
822 active unimported users
More ...

  Maximum number of "almost orthogonal" vectors one can embed in Hilbert space

+ 0 like - 0 dislike
1168 views

In a Hilbert space of dimension $d$, how do I calculate the largest number $N(\epsilon, d)$ of vectors $\{V_i\}$ which satisfies the following properties. Here $\epsilon$ is small but finite compared to 1.

$$<V_i|V_i> = 1$$

$$|<V_i|V_j>| \leq \epsilon, i \neq j$$

Some examples are as follows. 

1. $N(0, d)$ = d

2. $N\left(\frac{1}{2}, 2\right)$ = 3, this can be seen by explicit construction of vectors using the Bloch sphere.

3. $N\left(\frac{1}{\sqrt{2}}, 2\right) = 6$, again using the same logic.


How do I obtain any general formula for $N(\epsilon, d)$. Even an approximate form for $N(\epsilon, d)$ in the large $d$ and small $\epsilon$ limit works fine for me.

EDIT: The question is now resolved. See the answer at https://mathoverflow.net/a/336395/78150

asked Jul 18, 2019 in Mathematics by Joyshaitan (85 points) [ revision history ]
recategorized Jul 19, 2019 by Arnold Neumaier

1 Answer

+ 0 like - 0 dislike

The question asks for the largest spherical code with given parameters. This is a well-studied problem in finite geometry. 

answered Jul 19, 2019 by Arnold Neumaier (15,787 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...