# How many microstates have an assembly of Identical harmonic oscillators?

+ 1 like - 0 dislike
41 views

We have an isolated assembly of N indistinguishable harmonic oscillators, each has energy $\epsilon_i=\hbar \omega/2 + n_i \hbar\omega$, where $n_i$ is a non-negative integer. If the total energy of the system is $E=N\hbar\omega/2 + M\hbar\omega$, ($N\gg 1$) then each micro-state must satisfy
$$\sum_{i=1}^{N}\epsilon_i =E\quad\Longrightarrow \quad \sum_{i=1}^N n_i=M$$
To determine micro-canonical entropy we need to know the number of possible ways for this relationship to be satisfied. I was trying to deduce a formula, or find some relationship of recurrence:

If $M=0$
$$n_i=0\quad\forall i\quad\Longrightarrow\quad\omega(E)=\dfrac{N!}{N!}=1,$$
If $M=1$
$$n_i=0\quad\forall i \not=j\;\;, \wedge, \;\; n_j=1\quad$$ $$\Longrightarrow\quad\omega(E)=\dfrac{N!}{(N-1)!}=N,$$
If $M=2$
$$\begin{cases}n_i=0\quad\forall i \not=j&, \wedge, \;\; n_j=2\\ n_i=0\quad\forall i \not=j_1,j_2&, \wedge, \;\; n_{j_1}=1= n_{j_2} \end{cases} \quad$$ $$\Longrightarrow\quad \begin{cases} \omega_1=\dfrac{N!}{(N-1)!}=N,\\ \omega_2=\dfrac{N!}{(N-2)!2!}=\dfrac{N(N-1)}{2},\\ \end{cases}\quad$$ $$\Longrightarrow\omega(E)=\omega_1+\omega=\dfrac{N(N+1)}{2}$$
In the same way, if $M=3$
$$\begin{cases} \omega_1=N\\ \omega_2=\frac{N!}{(N-2)!}=N(N-1)\\ \omega_3=\frac{N!}{(N-3)!(3!)}=\frac{N(N-1)(N-2)}{3!} \end{cases}\Longrightarrow\quad\omega(E)=\omega_1+\omega_2+\omega_3=\frac{N(N+1)(N+2)}{3!}$$
Then for a non-negative integer $M$,
$$\omega(E)=\frac{\displaystyle\prod_{i=0}^{M-1}(N+i) }{M!}\overset{?}{=}\frac{(N+M-1)!}{M!(N-1)!}= \begin{pmatrix} N+M-1\\N-1 \end{pmatrix}$$
But it is not clear to me, Is okay?, Is there another way to get this?, How I interpret this result?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\varnothing$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.