Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  How to classifies the distinct "plasma" phases of matter?

+ 6 like - 0 dislike
947 views
  1. How to classifies the distinct "plasma" phases of matter?

and

  1. What theory classifies the distinct "plasma" phases of matter?

According to Wikipedia: Plasma (from Greek πλάσμα, "anything formed") is one of the four fundamental states of matter, the others being (i) solid, (ii) liquid, and (iii) gas. A (iv) plasma has properties unlike those of the other states.

 For (i) solid, (ii) liquid, and (iii) gas: 

We know that large amount of solid crystals can be classified by the crystal "symmetry (Answer of 1)." And large amount of (i) solid, (ii) liquid, and (iii) gas can be classified by the theory of **Landau-Ginzburg theory of symmetry and symmetry-breaking (Answer of 2).

Some of the solid states have phase transition between the metal phase and the insulator phase, called metal-insulator transition. Some of them can still be classified by the theory of Landau-Ginzburg theory of symmetry and symmetry-breaking,** but some can not.

 How about the (iv) plasma?
  1. Can plasma be a gapped or gapless phase? Do Landau-Ginzburg theory of symmetry and symmetry-breaking classifies plasma or not? What are the symmetry and the symmetry breaking here? Are the classical E&M plasma and the quantum plasma the different phenomena? Are there something more exotic in plasma other than the Anderson-Higgs mechanism for the plasmon?
This post imported from StackExchange Physics at 2020-10-28 19:01 (UTC), posted by SE-user annie marie heart
asked Oct 30, 2016 in Theoretical Physics by annie marie heart (1,205 points) [ no revision ]
Your question is answered on Wikipedia already : en.wikipedia.org/wiki/Plasma_(physics)#Definition A plasma can be seen as a gas or a liquid of charged particles, though the global charge of the complete system is zero. In short, ions in water is a plasma, electrons in a metal is a plasma, a gas of atoms when the electrons are free (atoms are said to be ionised in that case) is a plasma, ... almost everything is in fact a plasma if you look at it at a sufficient microscopic level. Landau symmetry argument does not apply to separate the plasma phase to the other phases.

This post imported from StackExchange Physics at 2020-10-28 19:01 (UTC), posted by SE-user FraSchelle

1 Answer

+ 1 like - 0 dislike
  1. How to classifies the distinct "plasma" phases of matter?
  2. What theory classifies the distinct "plasma" phases of matter?

These questions do not really make sense (unless I am misunderstanding your point). A plasma is an ionized gas that exhibits a collective behavior similar to a fluid but is a kinetic gas. There are not multiple phases of plasma. There are collisional and collisionless plasmas though, i.e., those whose dynamics are governed by particle-particle collisions and those that aren't.

If you are asking what makes a plasma different from three standard phases of matter, then the answer is many things. For instance, a plasma is governed by instabilities and long-range interactions (i.e., Coulomb collisions).

How about the (iv) plasma?

Plasmas do have extremely large electrical conductivities, but they are not consistent with Type-I superconductors. In fact, plasmas are very different than both types of solid- and liquid-phase superconductors in that their dynamics are governed by electromagnetic fields.

Can plasma be a gapped or gapless phase? Do Landau-Ginzburg theory of symmetry and symmetry-breaking classifies plasma or not?

I cannot say whether Landau-Ginzburg theory applies to quark-gluon plasmas but it does not apply to electromagnetic plasmas like that in the solar wind.

What are the symmetry and the symmetry breaking here?

I do not think this type of phenomena really matters for most electromagnetic plasmas. It may be important near pulsars and/or magnetars where spin is very important and the particle gyroradii can be quantized. However, for most situations a plasma can be treated classically as a kinetic gas.

Are the classical E&M plasma and the quantum plasma the different phenomena?

Yes, electromagnetic plasmas are classical (except for the extreme cases I mentioned before) while quark-gluon plasmas are an entirely different beast mediated by different forces.

Are there something more exotic in plasma other than the Anderson-Higgs mechanism for the plasmon?

I think plasmons are primarily relevant to metals/solids. I do not think the Anderson-Higgs mechanism is relevant to a classical kinetic gas.

This post imported from StackExchange Physics at 2020-10-28 19:01 (UTC), posted by SE-user honeste_vivere
answered Oct 31, 2016 by honeste_vivere (30 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysics$\varnothing$verflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...