One interesting example: For the one-dimensional quantum simple harmonic oscillator, the operators 1, ˆx and ˆp generate a real Lie algebra (the Heisenberg algebra). However, it is often useful to work instead in terms of the raising and lowering operators, so that our generators are 1,ˆa,ˆa†. Since ˆa=ˆx+iˆp, the algebra they generate is the complexification of the Heisenberg algebra.
There is a useful sense in which the Lie algebra of any Lie group is "naturally" real, since it's a tangent space of a manifold. For example GLn(C), considered as an abstract Lie group, is a 2n2-dimensional manifold, so the Lie algebra is "really" a real vector space with 2n2 basis vectors. In physics we usually think of it as a complex vector space with n2 basis vectors, but we don't have to. Every Lie algebra I can think of in physics comes from some Lie group, so complex Lie algebras come only from either complexification (as in the raising/lowering operator case) or from treating a 2n-dimensional real Lie algebra as an n-dimensional complex Lie algebra. (I don't have a name for the latter process, or much understanding of it - suggestions welcome).
This post imported from StackExchange Physics at 2020-12-04 11:35 (UTC), posted by SE-user Daniel