I define an exterior Lie algebra by the following axioms:
1)
$$\alpha \wedge (\beta \wedge \gamma)=(\alpha \wedge \beta)\wedge \gamma$$
2)
$$\alpha \wedge \beta = (-1)^{deg(\alpha)deg(\beta)}(\beta \wedge \alpha)$$
3)
$$[\alpha,\beta]=-[\beta,\alpha]$$
4)
$$[\alpha,[\beta,\gamma]]=[[\alpha,\beta],\gamma]+[\beta,[\alpha,\gamma]]$$
5)
$$[\alpha\wedge \beta,\gamma]=[\alpha,\beta]\wedge \gamma+(-1)^{deg(\alpha)deg(\gamma)}(\alpha \wedge [\beta,\gamma])$$
i)
$$deg(\alpha \wedge \beta)=deg(\alpha)+deg(\beta)$$
ii)
$$deg([\alpha,\beta])=deg(\alpha)+deg(\beta)$$
Is such an algebra a supersymmetric algebra?