Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,798 comments
1,470 users with positive rep
820 active unimported users
More ...

  Donaldson-Thomas Theory and "Quantum Foam" for Mathematicians

+ 10 like - 0 dislike
180 views

Let $X$ be a smooth, projective Calabi-Yau threefold. From an algebro-geometric perspective, the Donaldson-Thomas invariants $\text{DT}_{\beta, n}(X)$ are virtual counts of ideal sheaves on $X$ with trivial determinant. They are defined as the degree of the virtual cycle of the moduli space of such sheaves. The Donaldson-Thomas partition function is the generating function

$$Z_{\text{DT}}(X) = \sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{n \in \mathbb{Z}} \text{DT}_{\beta, n}(X) Q^{\beta} q^{n}.$$

In physics, the DT invariants have a number of interpretations. I more or less understand that they are virtual counts of BPS states of D2-D0 branes inside a single D6-brane, and the DT partition function can be thought of as a BPS black hole partition function with no D4-branes. I also have some partial understanding that the DT invariants are related to the statistical mechanics of crystal melting.

The perspective I'm interested in here is DT theory related to "quantum foam." This is obviously a physics term, and it refers to changes in the topology of spacetime at small scales. This has always puzzled me, since in DT theory we have one fixed $X$, but I believe the idea is the following:

As algebraic geometers, if we're given a sheaf of ideals $\mathcal{I}$ on $X$, we can form the blowup $\text{Bl}_{\mathcal{I}}(X)$. This certainly has a different topology than $X$, and I believe the idea is that instead of counting ideal sheaves as you do in DT theory, you can count line bundles but on blowups of $X$. This, I think, is the topology change involved in quantum foam. See the original source (https://arxiv.org/pdf/hep-th/0312022.pdf) as well as page 10 of (https://arxiv.org/pdf/0912.1509.pdf).

So my question is, to what extent (if any) do we have a rigorous mathematical understanding of this procedure? I mean, we have a nice moduli scheme of sheaves in DT theory, but somehow at each point, we want to blow up $X$ along that ideal sheaf? By equation (2.3) in (https://arxiv.org/pdf/hep-th/0312022.pdf) I believe the hope is to write the DT partition function as

$$Z_{\text{DT}}(X) = \sum q^{\text{ch}_{3}} \prod_{i} Q_{i}^{\int_{C_{i}} \text{ch}_{2}}$$

where is sum is over blowups of $X$ (?) and the Chern characters are of the pullback of the ideal sheaf under the blowup? If anyone could help me understand any of this from a mathematical perspective, I'd really appreciate it.

This post imported from StackExchange MathOverflow at 2024-09-03 14:41 (UTC), posted by SE-user Benighted
asked Feb 23, 2019 in Theoretical Physics by Benighted (360 points) [ no revision ]
retagged Sep 3

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...