Pretend that we are in space and that gravitational attraction is negligible. Now, imagine that there are two disks that are exactly the same. However, on the first disk, a force is applied tangentially and on the second disk, the same force is applied to its center of mass. The force is exerted over the same distance for both.
Now here is where I'm having problems making sense of the situation. Since the force is the same for both disks the horizontal acceleration should be the same. After travelling a distance $d$, both disks should have the same final horizontal velocity. The work done should also be the same.
However, since the force is tangential on the first disks, there must be a torque and the first disk would have gained an angular velocity. But $W = Δk_{rotation} + Δk_{translation}$. The work and the kinetic energy of translation can't be the same if disk 1 has rotational kinetic energy.
One of the assumptions I have made must therefore be wrong. Either the work done on the disks isn't the same, or the horizontal acceleration isn't the same, or disk 1 has no angular velocity.
This post imported from StackExchange Physics at 2025-01-22 11:04 (UTC), posted by SE-user Pierre