2+1D lattice gauge theory can emerge in a spin system through fractionalization. Usually if the gauge structure is broken down to $\mathbb{Z}_N$, it is believed that the fractionalized spinons are deconfined. However in general, $\mathbb{Z}_N$ gauge theory also have a confined phase. The question is how to determine if the discrete emergent gauge theory is really deconfined or not?
For example, I am considering a $\mathbb{Z}_3$ gauge-Higgs model defined on the Kagome lattice with the Hamiltonian $H=J\sum_{\langle i j\rangle}\cos(\theta_i-\theta_j-A_{ij})$, where $\theta_i=0,\pm2\pi/3$ is the matter field and $A_{ij}=0,\pm2\pi/3$ is the gauge field. If the matter field is in a ferromagnetic phase, then I can understand that the gauge field will be Higgs out. But the matter field here is a Kagome antiferromagnet, which is strongly frustrated and may not order at low temperature. So in this case, I would suspect that the effective $\mathbb{Z}_3$ gauge theory will be driven into a confined phase. Is my conjecture right? How to prove or disprove that?
Thanks in advance.
This post imported from StackExchange Physics at 2014-04-05 03:24 (UCT), posted by SE-user Everett You