Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,354 answers , 22,792 comments
1,470 users with positive rep
820 active unimported users
More ...

  Time reversal symmetry and T^2 = -1

+ 6 like - 0 dislike
1168 views

I'm a mathematician interested in abstract QFT. I'm trying to undersand why, under certain (all?) circumstances, we must have $T^2 = -1$ rather than $T^2 = +1$, where $T$ is the time reversal operator. I understand from the Wikipedia article that requiring that energy stay positive forces $T$ to be represented by an anti-unitary operator. But I don't see how this forces $T^2=-1$. (Or maybe it doesn't force it, it merely allows it?)

Here's another version of my question. There are two distinct double covers of the Lie group $O(n)$ which restrict to the familiar $Spin(n)\to SO(n)$ cover on $SO(n)$; they are called $Pin_+(n)$ and $Pin_-(n)$. If $R\in O(n)$ is a reflection and $\tilde{R}\in Pin_\pm(n)$ covers $R$, then $\tilde{R}^2 = \pm 1$. So saying that $T^2=-1$ means we are in $Pin_-$ rather than $Pin_+$. (I'm assuming Euclidean signature here.) My question (version 2): Under what circumstances are we forced to use $Pin_-$ rather than $Pin_+$ here?

This post imported from StackExchange Physics at 2014-04-05 17:29 (UCT), posted by SE-user Kevin Walker
asked Jan 13, 2012 in Theoretical Physics by Kevin Walker (65 points) [ no revision ]
Now cross-listed on TP.SE: theoreticalphysics.stackexchange.com/q/843/189

This post imported from StackExchange Physics at 2014-04-05 17:29 (UCT), posted by SE-user Qmechanic

1 Answer

+ 2 like - 0 dislike

There are two possible answers to why $T^2=-1$:

a) Why not. The total phase of a quantum state is unphysical. So a symmetry may be realized as a projective representation. Here T may be viewed as a projective representation of time reversal $T_{phy}$ which satisfy $T^2_{phy}=1$.

b) If we define the time reversal symmetry to be realized as a regular representation in a many-body systems with $T^2=1$, the symmetry operations that act on fractionalized quasiparticles may be realized projectively, with $T^2_{quasi}=-1$.

This post imported from StackExchange Physics at 2014-04-05 17:29 (UCT), posted by SE-user Xiao-Gang Wen
answered May 26, 2012 by Xiao-Gang Wen (3,485 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverflo$\varnothing$
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...