Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,800 comments
1,470 users with positive rep
820 active unimported users
More ...

  Non-linear sigma model and QCD

+ 3 like - 0 dislike
1335 views

In the exponential representation after spontaneous symmetry breaking of the $SU(2) \times SU(2)$ by a VEV, $ v $, the non-linear sigma model can be written,

\begin{align} {\cal L} & = \frac{1}{2} \left[ ( \partial ^\mu S ) ^2 - 2 \mu ^2 S ^2 \right] + \frac{ ( v + S ) ^2 }{ 4} \mbox{Tr} \left( \partial _\mu \Sigma \partial ^\mu \Sigma ^\dagger \right) - \lambda v S ^3 - \frac{ \lambda }{ 4} S ^4 \\  & + \bar{\psi} i  \partial_\mu \gamma^\mu \psi - g ( v + S ) \left( \bar{\psi} _L \Sigma \psi _R + \bar{\psi} _R \Sigma \psi _L \right) \end{align}

where $S$ and $\Sigma$ are related to the linear representation of $\sigma$ and ${\vec \pi}$ by, 

\begin{equation} 
\pi = \sigma + i {\vec \tau} \cdot {\vec \pi} = ( v + S ) \Sigma \quad , \quad \Sigma = \exp \left( \frac{ i {\vec \tau} \cdot {\vec \pi} ' }{ v } \right) 
\end{equation} 

Spontaneous symmetry breaking lead to three Goldstone bosons, $\vec \pi $. These are typically identified as the pions. But where did this identification come from? We started with 4 unknown scalar fields and an $SU(2)\times SU(2)$ flavor symmetry. Why would we expect the Goldstone bosons of this broken symmetry give rise to composite particles made of the fermions?

asked Apr 14, 2014 in Theoretical Physics by JeffDror (650 points) [ revision history ]
edited Apr 14, 2014 by JeffDror

1 Answer

+ 1 like - 0 dislike

I don't know a full answer myself, and look forward to other replies. 

However, in the S-matrix (which defines the physical  fields), all bound states appear on equal footing (nuclear democracy).

Thus compositeness is nothing intrinsic to a (relativistic) quantum field but a property of the (bare) Lagrangian formulation.

answered Apr 14, 2014 by Arnold Neumaier (15,787 points) [ revision history ]
edited Apr 18, 2014 by dimension10

Thanks, I guess if we are to identify the mesons as the Goldstones I would have expected to have have a state "$\bar{q}q$" come out in the spontaneously broken Lagrangian, but I admit I'm not sure how that would work.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...