Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,786 comments
1,470 users with positive rep
820 active unimported users
More ...

  Why does a spurion give the correct symmetry breaking terms regardless of the high energy physics?

+ 2 like - 0 dislike
1714 views

In short, my question is why does a spurion analysis work to produce the correct symmetry breaking terms regardless of the high energy physics?

The context that this question arose is from an Effective Field Theory course (for more context, see here, Eq. 5.50). Consider the QCD Lagrangian,
\begin{equation} 
{\cal L} _{ QCD} = \bar{\psi} \left( i \gamma^\mu D_\mu - m \right) \psi 
\end{equation} 
The kinetic part is invariant under a chiral transformation:
\begin{equation} 
\psi \rightarrow \left( \begin{array}{cc} 
L & 0 \\  
0 & R 
\end{array} \right) \psi 
\end{equation} 
however, the mass term is not. Now the claim I don't understand is as follows. Suppose the mass transformed as,
\begin{equation} 
m \rightarrow L m R ^\dagger 
\end{equation} 
In that case the mass term would be invariant under such a transformation. To write down the correct chiral symmetry breaking terms in our Lagrangian we find the terms invariant given this transformation for $ m $ and then make $ m $ a constant again. 

The way I understand this physically is that the breaking arises from a high energy spurion field, $ X $, which gets a VEV, $ m $. When we write down all possible chiral symmetry preserving terms using the transforming $m$, we are writing down all the terms that the spurion couples to. The VEV is then inserted and is equal to $ m $. But this procedure assumes that the spurion obeys the chiral symmetry, $ SU(2) _L \times SU(2) _R $, and transforms as, $ X \rightarrow L X R ^\dagger $. How do we know this assumption is true? In fact it seems to fail for the case of QCD since the ``spurion field'' is really the Higgs field, which is a singlet under $ SU(2) _R $.

asked Apr 19, 2014 in Theoretical Physics by JeffDror (650 points) [ revision history ]
edited Apr 19, 2014 by JeffDror

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsO$\varnothing$erflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...