Nobody wrote an answer, so I'll give it a try
- Indeed in Bohmian QM quasiparticles are not on the same ground as ordinary particles. For example consider phonons in a crystal lattice. From a Bohmian POV, the atom position observables have fundamental significance. But observables natural from the phonon POV, such as phonon number are not functions of the atom positions. Of course these observables are still functions of atom positions + momenta, so in principle they can be assigned values along a Bohmian trajectory. However, this approach has serious issues. For one thing the "phononic" observables are still not going to play a symmetric role with the atomic positions. For another, the phonon number will not be integer*! This shows it hardly makes sense to talk about phonon trajectories
- Actually, the elementary particles are "quasiparticles". They are excitations of the quantum fields. This indeed means the Bohmian approach runs into trouble, since in Bohmian QFT the fields become the fundamental observables, making it inconsistent with nonrelativistic Bohmian QM. Actually it's not the only problem of Bohmian QFT: it also fails to be Lorentz invariant
*In the simplest harmonic model, the occupation number of each mode is a linear function of its energy i.e. something quadratic in both positions and momenta
This post has been migrated from (A51.SE)