Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  On the derivative of a Heaviside step function being proportional to the Dirac delta function

+ 5 like - 0 dislike
7964 views

I am learning Quantum Mechanics, and came across this fact that the derivative of a Heaviside unit step function is Dirac delta function. I understand this intuitively, since the Heaviside unit step function is flat on either side of the discontinuity, and hence its derivative is zero, except at the point where it jumps to 1, where it is infinite. However, what I don't understand intuitively is that when the discontinuity is, say $\alpha$, then the derivative is $\alpha \delta(x)$, while one would naively expect it to remain $\delta(x)$. After all, whether the discontinuity is 1 unit or 10 units, the slope still remains infinite. The intuitive reasoning that worked for the unit step function seems to break down here. It seems like voodoo at this point. Can someone throw some light on this, at the level of someone fairly new to the Dirac delta function?

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Joebevo
asked Nov 15, 2012 in Mathematics by Joebevo (35 points) [ no revision ]

4 Answers

+ 5 like - 0 dislike

Use the fundamental theorem of calculus ... If $\Theta'(x) = \delta(x)$, then we ought to have

$$\int_{-1}^{+1} \delta(x) = \int_{-1}^{+1} \Theta'(x) = \Theta(1) - \Theta(-1)$$

The left-hand-side is 1: One of the defining properties of the delta function is that it has area 1 under the peak at 0. The right-hand-side is also 1 because the theta function steps up by exactly 1 unit at 0.

Do you see the connection here?

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Steve B
answered Nov 15, 2012 by Steve B (135 points) [ no revision ]
It should be noted that this works for arbitrary small integration limits $\pm \epsilon$, which excludes most/all functions but $\delta(x)$ from fulfilling the requirement.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Claudius
+ 5 like - 0 dislike

Suppose $H(x)$ is the unit step function, and it's derivative is the Delta function,

$$\frac{d}{dx} H(x) = \delta(x)$$

Then multiplying by some factor $\alpha$ gives,

$$\frac{d}{dx} \left(\alpha H(x)\right) = \alpha \frac{d}{dx} H(x) = \alpha \delta(x)$$

So the statement really follows from the fact that differentiation is a linear operation.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Olaf
answered Nov 15, 2012 by Olaf (320 points) [ no revision ]
I understood it mathematically. But isn't the delta function supposed to be of infinite height? In that case, what exactly does it mean to say that something is $\alpha$ times infinity?

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Joebevo
The delta 'function' isn't really a function at all. Technically, it is something called a distribution; in down-to-Earth terms, it is only defined under an integral: $\int_{a}^{b}dx\, f(x)\delta(x) = f(0)$ if $a<0<b$, and $0$ otherwise. Then it's clear how to interpret $\alpha\delta(x)$.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Rhys
@Joebevo you have to take into account that the area "under" the delta function is also normalized. So you always have $\int_{-\infty}^\infty \delta(x) = 1$. Therefore $\delta(x)$ and $\alpha\delta(x)$ are not the same function, because if you integrate the latter you get $\alpha$.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Olaf
+ 4 like - 0 dislike

Here is a more direct way of seeing it. Instead of working with the Heaviside function, consider the function $$\frac{1}{2}\,\left(1+\tanh{\frac{x}{\epsilon}}\right)~.$$ Now, this is a nice, smooth function for finite $\epsilon$. But if you start to make $\epsilon$ smaller (try plotting it for values like $\epsilon=1$ and $\epsilon=0.1$) you'll see that it looks more and more like the Heaviside step function. Taking the derivative with respect to $x$ gives $$\frac{1}{2\epsilon}\,\text{sech}^{2}\frac{x}{\epsilon}~,$$ which, as expected, looks more and more like the delta function for smaller and smaller values of $\epsilon$. In fact, these functions give nice representations of the step and delta functions, respectively, in the $\epsilon \to 0$ limit.

This representation of the step function has a "jump" of 1 at $x=0$, so to get a jump of $\alpha$ you could start with $$\frac{\alpha}{2}\,\left(1+\tanh{\frac{x}{\epsilon}}\right)~.$$ Taking the derivative with respect to $x$ explains why you get $\alpha\,\delta(x)$.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user Robert McNees
answered Nov 15, 2012 by Robert McNees (50 points) [ no revision ]
+ 4 like - 0 dislike

A more formal proof:

We're treating the Heaviside function $\Theta$ and the delta function $\delta_0$ with support at $0$ both as distributions. This means they're defined by their action on functions $f$ which vanish sufficiently rapidly at $\infty$.

$\delta_0(f) = f(0)$.

$\Theta(f) = \int_{-\infty}^\infty \Theta(x) f(x) dx$

The derivative of a distribution $d$ is defined by duality: $d'(f) = -d(f')$. (Intuition: This is integration by parts, with $f$ vanishing at infinity.)

So $\Theta'(f) = -\Theta(f') = -\int_{-\infty}^\infty \Theta(x) f'(x)dx = - \int_0^\infty f'(x) dx = f(0) - f(\infty) = f(0)$.

Likewise, by linearity, $(\alpha\Theta)'(f) = \alpha\Theta'(f) = \alpha \delta_0(f)$.

This post imported from StackExchange Mathematics at 2014-06-09 19:12 (UCT), posted by SE-user user1504
answered Nov 15, 2012 by user1504 (1,110 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...