Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Which is the "delta prime potential" nowadays?

+ 2 like - 0 dislike
2159 views

I am running across a series of questions in SE about the potentials with support in a single point and all my folklore on the topic is from work I did 20 years ago. At that time there was two set of boundary conditions that were called $\delta'(x)$ potential

  1. The one of Holden, that actually when into the book of Albeverio et al, and that is the mirror of the conditions of the delta: it asks the derivative of the wavefunction to be continuous, and the waveunction itself to have a jump proportional to its derivative.
  2. The one of Kurasov, asking for a proportionality factor between the sides of the derivative, and other proporionality between the sides of the wavefunction, with both factors being one the inverse of the other.

Which is the current status of the nomenclature? I am under the impression that some other denomination has been used for the case 1, something related to operators. Also, which should be the analytical notation to write case 1 in a Hamiltonian (assuming case 2 is the $\delta '(x)$; it it is not, also same question for case 2 :-)

Bonus question: an argument to favour case 2 was the scale-invariance, namely that the S-matrix does not depend of the momenta, and that thas was linked to the "dimensions" of the delta prime potencial being $L^{-2}$. Why do we claim that the dimensions are these?

asked Aug 24, 2015 in General Physics by al.rivero (15 points) [ revision history ]
edited Aug 24, 2015 by al.rivero

The lecture notes on operator theory by Jan Derezinski contain a detailed discussion of delta interactions and their renormalization.

@ArnodlNeumaier I see but for delta prime it only discusses, without detail, the operator $|\delta'><\delta'|$, and does it in the half line, so no questions about continuity. At least, it focus the question on the connection with self-adjoint extensions

I don't know more. The dimension statement comes from looking at what happens when you substitute in the problem $x\to sx$ and $p\to s^{-1}p$.

@ArnoldNeumeir this is a great hint. I had forgotten how to argue for the dimension.

You should use the automatic ping completion facility (directly below the edit box) to reach a user - in both cases you tried you didn't reach me because of a typo! 

@ArnoldNeumaier Great! Thanks, and sorry by the typo

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...