# Is there a formalism for talking about diagonality/commutativity of operators with respect to an overcomplete basis?

+ 7 like - 0 dislike
299 views

Consider a density matrix of a free particle in non-relativistic quantum mechanics. Nice, quasi-classical particles will be well-approximated by a wavepacket or a mixture of wavepackets. The coherent superposition of two wavepackets well-separated in phase space is decidedly non-classical.

Is there a formalism I can use to call this density matrix "approximately diagonal in the overcomplete basis of wavepackets"? (For the sake of argument, we can consider a specific class of wavepackets, e.g. of a fixed width $\sigma$ and instantaneously not spreading or contracting.) I am aware of the Wigner phase space representation, but I want something that I can use for other bases, and that I can use for operators that aren't density matrices e.g. observables. For instance: $X$, $P$, and $XP$ are all approximately diagonal in the basis of wavepackets, but $RXR^\dagger$ is not, where $R$ is the unitary operator which maps

$\vert x \rangle \to (\vert x \rangle + \mathrm{sign}(x) \vert - x \rangle) / \sqrt{2}$.

(This operator creates a Schrodinger's cat state by reflecting about $x=0$.)

For two different states $\vert a \rangle$ and $\vert b \rangle$ in the basis, we want to require an approximately diagonal operator $A$ to satisfy $\langle a \vert A \vert b \rangle \approx 0$, but we only want to do this if $\langle a \vert b \rangle \approx 0$. For $\langle a \vert b \rangle \approx 1$, we sensibly expect $\langle a \vert A \vert b \rangle$ to be proportional to a typical eigenvalue.

This post imported from StackExchange Physics at 2014-06-11 21:28 (UCT), posted by SE-user Jess Riedel
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.