We consider here a Kretschmann gravity with a Lagrangian density with the form
$ L = K - a R_{u v} R^ {u v}$
where $K$ is the Kretschmann invariant and $a$ is constant coupling..
We look for a metric with the form
${{\it ds}}^{2}=f \left( r \right) d{t}^{2}-{\frac {d{r}^{2}}{f \left(
r \right) }}-{r}^{2}d{\theta}^{2}-{r}^{2} \sin ^2 \left( \theta
\right) d{\phi}^{2}$
For this metric we have
$K={\frac {4-8\,f \left( r \right) +4\, \left( f \left( r \right)
\right) ^{2}+4\, \left( {\frac {d}{dr}}f \left( r \right) \right) ^{
2}{r}^{2}+ \left( {\frac {d^{2}}{d{r}^{2}}}f \left( r \right)
\right) ^{2}{r}^{4}}{{r}^{4}}}$
and
$R_{{{\it uv}}}{R}^{{\it uv}}=\,{\frac { \left( {\frac {d^{2}}{d{r}^
{2}}}f \left( r \right) \right) ^{2}{r}^{4}+4\,{r}^{3} \left( {\frac
{d^{2}}{d{r}^{2}}}f \left( r \right) \right) {\frac {d}{dr}}f \left(
r \right) +8\, \left( {\frac {d}{dr}}f \left( r \right) \right) ^{2}{
r}^{2}-8\,r{\frac {d}{dr}}f \left( r \right) +8\,f \left( r \right) r{
\frac {d}{dr}}f \left( r \right) +4-8\,f \left( r \right) +4\, \left(
f \left( r \right) \right) ^{2}}{2{r}^{4}}}$
The corresponding Euler-Lagrange equation is given by
$-4\,{r}^{2} \left( -1+\alpha \right) {\frac {d^{2}}{d{r}^{2}}}f
\left( r \right) +4\,{r}^{3} \left( -2+\alpha \right) {\frac {d^{3}}{
d{r}^{3}}}f \left( r \right) +{r}^{4} \left( -2+\alpha \right) {\frac
{d^{4}}{d{r}^{4}}}f \left( r \right) \\+8\, \left( f \left( r \right) -1
\right) \left( -1+\alpha \right) =0$
and the solution has the form
$f \left( r \right) =1+{\frac {A}{r}}+B{r}^{2}+C{r}^{n}+E{r}^{m}$
where
$n={\frac {-2+\alpha+\sqrt {36-52\,\alpha+17\,{\alpha}^{2}}}{2(-2+
\alpha)}}$
$m=-\,{\frac {2-\alpha+\sqrt {36-52\,\alpha+17\,{\alpha}^{2}}}{2(-2+
\alpha(}}$
In the particular case when $a = 4 $ we obtain
$f \left( r \right) =1+{\frac {A}{r}}+B{r}^{2}+C{r}^{3}+{\frac {E}{{r}^
{2}}}$
it is to say we obtain a Reissner–Nordström -de Siiter black hole when
$A=-2\,M$
$B={\frac {\Lambda}{3}}$
$E={Q}^{2}$
$C = 0$
Then my questions are:
1. There is any reference on which this solution can be founded?
2. It is possible to have a physical solution with $C \neq 0 $.?
3. It is possible to have a physical solution with $a \neq 4$.?