I wanted to know how can I estimate the volume of the moduli space of a Riemann surface of genus $g$ and having $n$ marked points. I am reading some old string theory papers which discuss divergences in string perturbation theory. In this respect authors such as Gross, Periwal and Shenker say that the partition function in closed bosonic string theories asymptotically grows as $(2g)!$, where $g$ is the genus and they claim that this estimate can be obtained from the volume of moduli space. It would be great if anyone of you can suggest some reference where I learn about finding out the volume of moduli space of genus-$g$ surfaces with $n$ punctures.
This post imported from StackExchange Physics at 2014-12-08 12:12 (UTC), posted by SE-user user29126