# The contribution to the one loop beta function for the WZW model

+ 3 like - 0 dislike
106 views

When the Wess-Zumino-Witten model

$$S_{WZW}=\frac{k}{4\pi}\int d^2 z \, \, \mathrm{Tr}[\partial u \bar{\partial}u^{-1} ]+ \frac{k}{12\pi}\int d^3 \sigma \epsilon^{ijk}\, \mathrm{Tr}[(u^{-1}\partial_i u)(u^{-1}\partial_j u)(u^{-1}\partial_k u)]$$

is expanded around a solution of the equations of motions $u=u_0 e^{iT^a\pi^a}$ one gets

$$S_{WZW}=\frac{k}{4\pi}\int d^2 z \lbrace \, \mathrm{Tr}[\partial u_0 \bar{\partial}u_0^{-1} ]+ \frac{1}{2}\partial_\mu \pi^a\partial ^\mu \pi^a \\ +\frac{1}{2}(\eta^{\mu\nu}-\epsilon^{\mu\nu}) \, \mathrm{Tr}\lbrace (u_0^{-1}\partial_\mu u_0)[T^a\pi^a,T^b\partial_\nu \pi^b]\rbrace + \mathcal{O}(\pi^3)\rbrace$$

The one loop renormalization diagram is like In "Non-Perturbative Field Theory" by Y.Frishman and J.Sonnenschein (chapter 4.2 page 65) I read that the non vanishing contributions come only from the diagrams with both vertices proportional to $\eta^{\mu\nu}$ or to $\epsilon^{\mu\nu}$. Could someone explain me how one comes to that conclusion?

This post imported from StackExchange Physics at 2014-12-09 15:13 (UTC), posted by SE-user Anne O'Nyme
One comes to this conclusion due to the fact that the contraction of a symmetric tensor with an antisymmetric one vanishes. Writing down the loop diagrams involves a contraction of both vertices. If you get expressions proportional to $\epsilon_{\mu\nu}\eta^{\mu\nu}$, this will be zero due to the fact that the metric is symmetric and the epsilon tensor is antisymmetric.
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysi$\varnothing$sOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.