I am working on the first problem on self-consistent T-matrix approximation in Chapter 5 of Condensed Matter Field Theory by Altland and Simons. This is on page 234 of the textbook. I have some questions regarding part (a).
The Hamiltonian of the problem is $\hat H = \hat H_0 + \hat H_{imp}$, where
$\hat H_0 = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} c_{\mathbf{k}}^\dagger c_{\mathbf{k}}$,
$\hat H_{imp} = v_0 a^d \displaystyle\sum_{i=1}^{N_{imp}} c^{\dagger}(\mathbf{R_i})c(\mathbf{R_i})$, $N_{imp}$ is the number of impurities.
The goal is to compute the single-particle Green function $G_n = \langle \langle c^{\dagger}_n (\mathbf{r}) c_n(\mathbf{r'}) \rangle \rangle_{imp}$, where $n$ is the Matsubara frequency index and $\langle \cdots \rangle_{imp} \equiv \frac{1}{L^d} \int \prod_i d^d\mathbf{R_i}$ is the configurational average over all impurity coordinates.
Here is the problem statement of part (a)
Consider the scattering from a single impurity. By developing a perturbative expansion in the impurity potential, show that the Green function can be written as $\hat G_n=\hat G_{0,n} + \hat G_{0,n} \hat T_n \hat G_{0,n}$, where
$\hat T_n = \langle \hat H_{imp}+ \hat H_{imp} \hat G_{0,n} \hat H_{imp} + \hat H_{imp} \hat G_{0,n}\hat H_{imp} \hat G_{0,n} \hat H_{imp}+\cdots \rangle_{imp}$
denotes the T-matrix. Show that the T-matrix equation is solved by $T_n(\mathbf{r},\mathbf{r'})=\delta(\mathbf{r}-\mathbf{r'})L^{-d}((v_0 a^d)^{-1}-G_{0,n}(0))^{-1} $.
Here are my questions:
(1) The answer gives a hint about approaching the problem by representing the Green function $G_n = \langle \langle c^{\dagger}_n (\mathbf{r}) c_n(\mathbf{r'}) \rangle \rangle_{imp}$ in coherent state path integral, where $n$ is the Matsubara frequency index. The textbook states that the formal result after integrating over Grassmann field is $\hat G_{n} = (i \omega_n-\hat H_0-\hat H_{imp})^{-1}$. In my understanding, the coherent state path integral always yields a number. Is there a formal procedure for reverting the scalar back to operator? Or after obtaining the actual number, how should I proceed with the perturbation expansion?
(2) When evaluating the path integral, do I treat $c^{\dagger}_n (\mathbf{r}) c_n(\mathbf{r'})$ as Grassmann variable $ \bar\psi_n(\mathbf{r}) \psi_n(\mathbf{r'}) $? Should I fourier transform $\hat H_{imp}$ first?
(3) I don't see why the diagram in Fig. 5.11 is relevant for a single impurity.It looks more like the diagram for scattering off multiple impurities. Is this an error?
The diagram is shown in the image. ![Diagram](https://i.stack.imgur.com/VYi1w.jpg)
This post imported from StackExchange Physics at 2014-12-10 17:33 (UTC), posted by SE-user chicane