Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  What is the motivation behind the GSO projection in superstring theory?

+ 3 like - 0 dislike
836 views

I do agree that the GSO "works", making the number of degrees of freedom match on the bosonic and fermionic side and that it sweeps away the problematic tachyon. However it is very artificial, it makes me think of the R-parity/-symmetry invoked in e.g. the MSSM... Very accommodating but not very well motivated.

Could someone say if there is some deeper reason behind the GSO projection ?

This post imported from StackExchange Physics at 2015-01-15 14:04 (UTC), posted by SE-user Anne O'Nyme
asked Jan 15, 2015 in Theoretical Physics by Anne O'Nyme (175 points) [ no revision ]

1 Answer

+ 2 like - 0 dislike

The GSO projection – only keeping states for which $(-1)^F = +1$ – is inseparable from the inclusion of sectors with periodic (R) and antiperiodic (NS) fermions. Both of these features are consequences of the fact that the operator $(-1)^F$ or a similar one is a local (gauge) symmetry on the world sheet. In any gauge theory, physical states must always be demanded to be invariant under every gauge symmetry. In any gauge symmetry, objects where fields return to themselves up to a gauge symmetry must be allowed, too (sectors of closed strings with different periodicities).

Now, the question is which of these operators may or should be gauge symmetries on the world sheet.

The overall operator $(-1)^F$ where $F=F_L+F_R$ counts both left-moving and right-moving fermionic excitations must always be a gauge symmetry on the world sheet. This fact may be shown by the modular invariance (different ways of writing the partition sum on the world sheet torus must be equal to each other) – which is just the satisfaction of the symmetry under large diffeomorphisms (diffeomorphisms are a gauge symmetry; they must absolutely be a symmetry; large diffeomorphisms are those not connected to the identity).

More intuitively, in the state-operator correspondence, "periodic" operators on the plane are operators of the NS states and they are mapped to closed string states with "antiperiodic" (NS) conditions. And vice versa. Because we must allow periodic operators as well as periodic states, we must have both sectors that differ by the complete switch of the boundary conditions (periodic for antiperiodic and vice versa). Therefore, $(-1)^F$ is a local symmetry on the world sheet, and the GSO condition follows from that.

The theory where only this overall, "diagonal" GSO projection $(-1)^F$ is imposed are known as type 0 superstring theories. They are formally consistent – modular invariant – but they predict bosons in spacetime only, including a tachyon. The tachyon causes instabilities, infrared divergences, and so on. They are not "intrinsically stringy" inconsistencies but they're still features we view as pathological from the spacetime perspective.

More realistic theories turn both $(-1)^{F_L}$ and $(-1)^{F_R}$ separately – and as a consequence, also their product $(-1)^F$ – into gauge symmetries. The resulting theories have 4 sectors, NS-NS, NS-R, R-NS, R-R, and imposes two independent GSO projections. This product is still modular-invariant. Moreover, it predicts both fermions and bosons in the spacetime. The tachyon is eliminated – in fact, spacetime supersymmetry emerges. They are type II string theories.

Type IIA and IIB – and similarly 0A and 0B – differ by the sign of the GSO projection operator in the sectors with some "R".

The explanation above really boils down to the consistency conditions that are fundamental in perturbative string theory as understood in the modern way. Of course that originally and historically, the GSO projections were found in a more heuristic way. People (NS and R) played with the sectors of closed strings separately (to generate spacetime bosons and fermions, respectively), and GSO later realized that the theory with the projection seems more viable, and the realization that the GSO projections are needed for consistency and what the consistency conditions exactly are came a few years later (after GSO's paper).

This post imported from StackExchange Physics at 2015-01-15 14:04 (UTC), posted by SE-user Luboš Motl
answered Jan 15, 2015 by Luboš Motl (10,278 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...