For the incoming state, you don't know which spin state the particle is in, so you should average over the possible states. But you can measure the spin of the outgoing state, so to get the total cross section you should add up the cross sections for each spin.
More formally, an unpolarized incoming particle should be described as a density matrix, $$
\def\bra#1{\mathinner{\langle{#1}|}}
\def\ket#1{\mathinner{|{#1}\rangle}}
\rho(t=-\infty) = \frac{1}{2}( \ket{p\uparrow} \bra{p\uparrow} + \ket{p\downarrow}\bra{p\downarrow})$$
where the $\frac{1}{2}$ is for the normalization of the density matrix, $\operatorname{tr} \rho = 1$. Here $p$ is the momentum and this is of course for spin $\frac{1}{2}$ but the generalization to spin $1$ and higher will be obvious.
The density matrix will evolve to $\rho(t=\infty) = S \rho(t=-\infty) S^\dagger$ just by definition of the $S$-matrix. You want to calculate the probability to end up with momentum $q$, regardless of spin, at $t=\infty$. This is the expectation value at $t=\infty$ of the projection operator $$
P(q) = P(q,\uparrow) + P(q,\downarrow) = \ket{q\uparrow}\bra{q\uparrow} + \ket{q\downarrow}\bra{q\downarrow}.
$$
The expectation value of the projection operator is $$\langle P(q) \rangle = \operatorname{tr}(\rho P(q) ).$$
There will be four terms in the trace. One of them is $$T_{\uparrow\uparrow} = \frac{1}{2}\operatorname{tr}\big(S\ket{p\uparrow}\bra{p\uparrow}S^\dagger\ket{q\uparrow}\bra{q\uparrow}\big).$$
Note that in the middle is something that is just a number, and a familiar number too. $\bra{p\uparrow}S^\dagger\ket{q\uparrow} = (\bra{q\uparrow}S\ket{p\uparrow})^*$ is (the complex conjugate) of an S-matrix element. It is easy to realize that $$\operatorname{tr}\big(S\ket{p\uparrow}\bra{q\uparrow}\big) = \bra{q\uparrow}S\ket{p\uparrow}$$ and therefore $$T_{\uparrow\uparrow} = \frac{1}{2} |\bra{q\uparrow}S\ket{p\uparrow}|^2.$$
The other terms in the trace are similar and we end up with $$\langle P(q) \rangle = \frac{1}{2} \sum_{r,s} |S(p,r;q,s)|^2$$
where $r,s \in \{\uparrow, \downarrow\}$ are incoming and outgoing spins, respectively, and $S(p,r;q,s)$ is the $S$-matrix element. As you can see we recover the prescription average over incoming, and sum over outgoing.
This post imported from StackExchange Physics at 2015-03-23 06:04 (UTC), posted by SE-user Robin Ekman