Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  What are some interesting f(R) models?

+ 6 like - 0 dislike
823 views

\(f(R)\) gravity is a class of gravitational theories similiar to General Relativity in that the Lagrangian is a function of the Ricci scalar. Standard General Relativity with a cosmological constant is a special case of \(f(R)\) gravity where \(f(R)=R+\Lambda\). Expanding a general \(f(R)\) yields an expansion like \(f(R)=\sum\limits_{n=0}^\infty a_nR^n\) with the first term \(a_0 \) being the cosmological constant, and \(a_1R\) is the standard term that is the basic Einstein-Hilbert Lagrangian.

The Brans-Dicke theory with \(\omega=-3/2\) was found to be an \(f(R)\) theory with a connection-independent \(\mathcal{L}_M\) term. What are some other interesting gravitational models that can be (unexpectedly) written as an \(f(R)\) theory?

Of course, there are a number of other theories which can be written in an \(f(R)\) form, if we do not restrict ourselves to scalar generalisations of General Relativity. For example, Gauss-Bonnet gravity and the effective gravitational action of standard string theories all contain terms like \(R^{\mu\nu}R_{\mu\nu}\) and \(R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma}\)).

Are there any theories of quantum gravity that predict a scalar generalisation of General Relativity?

asked Mar 28, 2015 in Theoretical Physics by dimension10 (1,985 points) [ revision history ]
edited Mar 28, 2015 by dimension10

1 Answer

+ 3 like - 0 dislike

Drawing from my knowledge acquired mostly by reading the Living Review on this topic, it is obvious that many equivalences can be built via a conformal transformation. However, it should be noted that equivalences built by conformal transformation are only formal; mathematically, the field solutions of the theory will be the same, but the physical content of the theory becomes different. The non-equivalence can be easily seen e.g. through the change in behaviour of time-like geodesics under a conformal transform.

Furthermore, the theories will mostly not  be equivalent even in terms of mathematical form and solutions in the presence of matter because the coupling becomes non-minimal "$\mathcal{L}_m(g_{\mu \nu},...) \to \mathcal{L}_m(\Omega^{-2} g_{\mu \nu},...)$". The transformation to the Einstein frame is only a mathematical trick and a useful tool to compare the behaviour of the degrees of freedoms of different theories.

The only true equivalence seems to be acquired by the transform $f'(R) = \Phi$ (assuming $f'' \neq 0$) which yields the O'Hanlon action (not even general Brans-Dicke, only $\omega=0$!)

$$S = \int d^4 x \sqrt{-g}\left( \frac{1}{2} \Phi R - V(\Phi) \right) + S_m $$

I.e. $f(R)$ theory seems to not be even equivalent to general dilatonic or Brans-Dicke theory.

For further references on what these theories might mean I recommend the paper by O'Hanlon and the previous works by him and Fujii referred therein. (I do not know any reference from the string-theoretical side.)

answered Mar 26, 2016 by Void (1,645 points) [ no revision ]

Thank you, interesting.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...