The "projective semion" model was considered in http://arxiv.org/abs/1403.6491 (page 2). It is a symmetry enriched topological (SET) phase. There is one non-trivial anyon, a semion $s$ which induces a phase factor of $\pi$ when going around another semion.The chiral topological order is the same as the $\nu = 1/2$ bosonic fractional quantum Hall state, whose effective field theory is the $K = 2$ Chern-Simons theory: \begin{equation} \mathcal{L} = \frac{2}{4\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda} \end{equation}
The symmetry group for the theory is $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. We label the three non-trivial group elements as $g_x, g_y, g_z$. The symmetry can act on the semion in the following ways:
-
Each semion carries half charge for all three $\mathbb{Z}_2$ transformations. Moreover the three $\mathbb{Z}_2$ transformations anticommute with each other and can be represented as $g_x = i\sigma_x, g_y = i\sigma_y, g_z = i\sigma_z$.
-
The semion carries integral charge under two of the three $\mathbb{Z}_2$ transformations, and half charge under the the other $\mathbb{Z}_2$ transformation. There are three variants of this, and the symmetry group can be represented as $g_x = \sigma_x, g_y = \sigma_y, g_z = i\sigma_z$, or $g_x = \sigma_x, g_y = i\sigma_y, g_z = \sigma_z$, or $g_x = i\sigma_x, g_y = \sigma_y, g_z = \sigma_z$.
Symmetry fractionalization in case 1 is anomaly free but is anomalous in case 2, as shown in http://arxiv.org/abs/1403.6491.
I want to write down an effective field theory description to describe symmetry fractionlization pattern in cases 1 and 2 on the semion $a$, and can explicitly see that the field theory I write down for case 1 is anomaly free whereas that for case 2 has an anomaly.
One possible way is to gauge the symmetry $\mathbb{Z}_2 \times \mathbb{Z}_2$, and couple the gauge fields to the semion $a$. The different coupling terms reflect the different ways that the symmetry is represented on the semion. I think this is essentially what Eq.(5) on page 21 of http://arxiv.org/abs/1404.3230 is trying to describe. The action they wrote down is
\begin{equation} \mathcal{L} = \frac{2}{4\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda} + \frac{p_1}{2\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}A_{1\lambda} + \frac{p_2}{2\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}A_{2\lambda} + \frac{p_3}{\pi^2}\epsilon^{\mu\nu\lambda}a_{\mu}A_{1\nu}A_{2\lambda} \end{equation}
I can understand the second and third terms in this action, which says (with $p_1=p_2=1$) that the semion $a$ carries half symmetry charge under the two generators (say $g_x$ and $g_y$) of $\mathbb{Z}_2\times \mathbb{Z}_2$.
However, I am having trouble understanding the last term in the action, presumably, it means that the semion carries half charge under all three elements $g_x,g_y,g_z$ in $\mathbb{Z}_2\times\mathbb{Z}_2$. If this is correct then setting $p_1=p_2=0, p_3=1$ gives us an effective description of case 1. The theory is anomaly free; whereas setting $p_1=p_2=p_3=1$ gives us an effective description of case 2 (semion $a$ carries half $g_x,g_y,g_z$ charge from the last term, and an additional half $g_x,g_y$ charge from the second and third term), and the theory is anomalous. This is consistent with the claim on page 24 of http://arxiv.org/abs/1404.3230.
Does any people have an idea why the last term in $\mathcal{L}$ says that the semion carries half charge under all three elements $g_x,g_y,g_z$ in $\mathbb{Z}_2\times\mathbb{Z}_2$?
This post imported from StackExchange Physics at 2015-04-27 21:18 (UTC), posted by SE-user Zitao Wang