I'm reading chapter 4 of the book by Green, Schwarz and Witten. They consider an action
S=−12π∫d2σ(∂αXμ∂αXμ−iˉψμρα∂αψμ),,
where
ψμ are Majorana spinors,
ρ0=(0−ii0),ρ1=(0ii0),
ˉψ=ψ†ρ0.
It is claimed that this action is invariant under the following infinitesimal transformations
δXμ=ˉεψμ,δψμ=−iρα∂αXμε,
where
ε is a constant (doesn't depending on worldsheet coordinates) anticommuting Majorana spinor.
I can't prove it. Can you show me where I'm wrong?
δ(∂αXμ∂αXμ)=2∂αXμ∂αˉψμε
(I used
ˉχψ=ˉψχ identity).
δ(−iˉψμρα∂αψμ)=−i¯(−iρα∂αXμε)ρβ∂βψμ−iˉψμρα∂α(−iρβ∂βXμε)=−¯ρβ∂βψμρα∂αXμε−ˉψμρα∂αρβ∂βXμε.
Note that
¯ρβ∂βψμ=∂βψ†μ(ρβ)†ρ0≡∂0ψ†μ(ρ0)†ρ0+∂1ψ†μ(ρ1)†ρ0=∂0ψ†μρ0ρ0−∂1ψ†μρ1ρ0=∂0ψ†μρ0ρ0+∂1ψ†μρ0ρ1≡∂βˉψμρβ.
So
δ(−iˉψμρα∂αψμ)=−∂βˉψμρβρα∂αXμε−ˉψμρα∂αρβ∂βXμε≡−∂αˉψμραρβ∂βXμε−ˉψμρα∂αρβ∂βXμε.
How the variation can vanish? I don't see any chance. I'll remind that the symmetry is global, so we even can't integrate by parts.
This post imported from StackExchange Physics at 2015-05-30 00:22 (UTC), posted by SE-user vanger