Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Why is an extended T(Q)FT called fully local?

+ 3 like - 0 dislike
664 views

Hopefully this question does not double another. If so, don't bother to close this.

An extended topological quantum field theory is sometimes called, 'fully local". Why is that? I can imagine that such a theory Has local structure, while an ordinary TQFT has not.

The question is vague, but a more precise answer, or even an example of local stuff going on, would be appreciated.


This post imported from StackExchange MathOverflow at 2015-06-10 18:55 (UTC), posted by SE-user Mark.Neuhaus

asked May 12, 2015 in Theoretical Physics by mark.neuhaus (15 points) [ revision history ]
edited Jun 10, 2015 by Dilaton

1 Answer

+ 4 like - 0 dislike

I believe there's an explanation on the nlab page for extended topological quantum field theories (http://ncatlab.org/nlab/show/extended+topological+quantum+field+theory) and on page 13 of Lurie's cobordism paper. We can compute the value of an extended TQFT $Z$ on a manifold $X$ simply by computing it locally, and then gluing. In fact, we can determine a $1$-dimensional TQFT by its value on the point!

For example, let us return to the case where we wished to compute the value of an extended TQFT $Z$ on a manifold $X$. Locally we can break $X$ down into a collection of neighborhoods of points; if we wished to compute $X$, we could simply study the value of $Z$ on these neighborhoods! Another example is when a manifold $X$ is given by the data of a cobordism, say $X=X_1\coprod_{\partial X_1=\partial X_2}X_2$. If $Z$ is a $1$-dimensional TQFT, then $Z(X)$ is determined by the value of $Z$ on $X_1$ and $X_2$.

I don't know much about quantum field theories from a physics perspective, but the nlab claims that "the notion of locality in quantum field theory is precisely this notion of locality. And, as also discussed at FQFT, this higher dimensional version of locality is naturally encoded in terms of n-functoriality of $Z$ regarded as a functor on a higher category of cobordisms".

In a single sentence (which I've already written at the beginning of the answer): we can compute the value of an extended TQFT $Z$ on a manifold $X$ simply by computing it locally, and then gluing.

This post imported from StackExchange MathOverflow at 2015-06-10 18:55 (UTC), posted by SE-user Sanath
answered May 12, 2015 by Sanath (40 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...