Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,355 answers , 22,793 comments
1,470 users with positive rep
820 active unimported users
More ...

  Some limiting cases of the Heisenberg XXZ model (1/2)

+ 1 like - 0 dislike
1961 views

NOTE: Because this was a long question I have split it up in two different questions!

For a course on quantum integrability I am reading these notes. (Franchini: Notes on Bethe Ansatz Techniques. Lecture notes (2011))

Some questions have arisen to me, concerning the Heisenberg XXZ model. The general idea is that we will solve several versions of this model in class, using the Bethe Ansatz Approach. However, the basics are not yet clear to me. Consider the Hamiltonian: \begin{equation} \hat{H} = - J \sum_{i=1}^N \left(S^x_jS^x_{j+1} + S^y_jS^y_{j+1} + \Delta S^z_jS^z_{j+1}\right) - 2h\sum_{i=1}^NS^z_j, \end{equation} where we have periodic boundary conditions: $S^{\alpha}_{j+N} = S^{\alpha}_j$. In the following I will set $h=0$.

  1. For $\Delta = 1$ we recover the Heisenberg XXX model. At first I thought that a ground state would be all spins making an angle of 45 degrees with the z-axis and the projected part an angle of 45 degrees with both the y and the x axis. Equivalent ground states would then follow by performing rotations of 90 degrees around the z-axis. However, it occurred to me that the model is solved by introducing the spin flip operators: $S^{\pm}_n := S^x_n \pm iS^y_n$. I think this effectively means that you are quantizing along the z-direction, yielding a ground state $|0> = |\uparrow\uparrow\uparrow\dots\uparrow>$, with all spins in the z-direction. Is this reasoning correct? Of course I have done spin in my quantum mechanics course, but I fail to make the connection with this case and have lost my handiness with it.

  2. $\Delta=0$: the XX or XY model. Apparently "the model can be exactly mapped into free lattice fermions". I have no clue what this means and how it works. References?

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Funzies
asked Sep 24, 2013 in Theoretical Physics by Funzies (5 points) [ no revision ]
Minor comment to the question (v2): Please consider to mention explicitly author, title, etc. of link, so it is possible to reconstruct link in case of link rot.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Qmechanic
@Qmechanic Done.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Funzies
It would probably be clearer for readers that $h=0$ if you don't write the $-2h\sum_j S_j^z$ term in the first place.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Mark Mitchison

1 Answer

+ 2 like - 0 dislike
  1. Yes, by introducing a homogenous field in the $z$ direction you break full $SU(2)$ rotational symmetry. Otherwise, you would have more degeneracies, but since the Hamiltonian conserves magnetization you can easily add or remove a homogenous field. If you do remove the field then any spin axis is fine and the ground state will be further degenerate. By introducing creation and annihilation operators for the spin projection in $z$ direction you are essentially hiding the full symmetry of the model, but the ground states will still be states which have all spins pointing in some direction. You will see that clearly for those which point in the $z$ direction because that is the basis you chose.
    For, finite $\Delta \neq 1$ the symmetry is actually a q-deformation of the universal enveloping algebra of $su(2)$, $U_q[SU(2)]$. See, for instance, L. D. Faddeev, "How Algebraic Bethe Ansatz works for integrable model" [1]

  2. This is called the Wigner-Jordan transformation. Basically you show that these models are essentially not interacting, that is to say that they are just like a gas of spinless "free" fermions.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Bubble
answered Sep 24, 2013 by Bubble (210 points) [ no revision ]
Aha, I see now. Sorry.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Bubble
Cheers, nice answer, +1.

This post imported from StackExchange Physics at 2015-06-15 19:43 (UTC), posted by SE-user Mark Mitchison

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverf$\varnothing$ow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...