Physical application of the K.H.Mayer`s integrality theorem: Anomaly for Heterotic $SO(32)$ Fivebrane.
The Heterotic $SO(32)$ fivebrane configuration breaks down the D=10 local Lorentz symmetry $SO(9,1)$ to $SO(5,1)×SO(4)$; where $SO(5,1)$ acts on the tangent bundle to the heterotic $SO(32)$ fivebrane world-volume denoted $TW$; and $SO(4)$ acts as gauge group on the normal bundle to the heterotic $SO(32)$ fivebrane world-volume denoted $N$.
Then, the K.H.Mayer`s integrality theorem for a normal bundle $N$ with structure group $SO(4)$ produces the following two cohomological expressions
$$2^2M(N)\hat{A}(TW)$$
and
$$W_{4}(N)\hat{A}(N)^{-1}\hat{A}(TW)$$
From the original proof of the K.H.Mayer`s integrality theorem we have that
$$ch(S_{+}(N))+ch(S_{-}(N))= 2^2M(N)$$
and
$$ch(S_{+}(N))-ch(S_{-}(N))= W_{4}(N)\hat{A}(N)^{-1}$$
From these last equations we deduce that
$$ch(S_{+}(N))=\frac{1}{2} [2^2M(N)+ W_{4}(N)\hat{A}(N)^{-1}]$$
and
$$ch(S_{-}(N))=\frac{1}{2} [2^2M(N)-W_{4}(N)\hat{A}(N)^{-1}]$$
which are rewritten as
$$ch(S_{\pm}(N))=\frac{1}{2} [2^2M(N)\pm W_{4}(N)\hat{A}(N)^{-1}]$$
Now, we have that
$$W_{4}(N)\hat{A}(N)^{-1}= W_{{4}} \left( N \right) +\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
\left( N \right)$$
$$M(N)=1+\frac{1}{8}\,p_{{1}}(N)+{\frac {1}{96}}\,p_{{2}}(N)+{\frac {1}{384}}\,{p_{{1}}}(N)^ {2}+....$$
Using these last equations we obtain
$$ch(S_{\pm}(N))=\frac{1}{2} [4(1+\frac{1}{8}\,p_{{1}}(N)+{\frac {1}{96}}\,p_{{2}}(N)+{\frac {1}{384}}\,{p_{{1}}}(N)^ {2}) \pm \\ (W_{{4}} \left( N \right) +\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
\left( N \right))]$$
which is reduced to
$$ch(S_{\pm}(N))=2+\frac{p_{{1}}(N) \pm W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)\pm 4 W_{4} ( N )p_{1}(N)}{192}$$
and it is exactly the equation $(6)$ on page 4 of http://arxiv.org/pdf/hep-th/9709012v1.pdf ; where $W_4(N) = \chi(N)$, $S_{+}(N)$ is the spin bundle with positive chirality constructed from $N$ by using the spinor representation of $SO(4)$; and $S_{-}(N)$ is the spin bundle with negative chirality constructed from $N$ by using the spinor representation of $SO(4)$.
One first kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $\theta$-fermions and they belong to the $(4_{+},2_{+})$ representation of $SO(5,1) × SO(4)$.
The total gravitational anomaly of the $\theta$-fermion zero modes living in the world-volume of the heterotic $SO(32)$ fivebrane is given by descent from
$$I_{8}^{\theta}=\frac{1}{2}[\hat{A}(TW)ch(S_{+}(N))]_{8-form}$$
Using that
$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$
and
$$ch(S_{+}(N))=2+\frac{p_{{1}}(N) + W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)+ 4 W_{4} ( N )p_{1}(N)}{192}$$
we obtain
$$I_{8}^{\theta}={\frac {7}{5760}} p_{{1}} \left( {\it TW} \right) ^{
2}+{\frac {1}{96}}\,p_{{2}} \left( N \right) +{\frac {1}{384}}p_{{1}} \left( N \right) ^{2}- $$
$${\frac {1}{1440}}\,p_{{
2}} \left( {\it TW} \right) -{\frac {1}{192}}\,p_{{1}} \left( {\it TW}
\right) p_{{1}} \left( N \right) + $$
$${\frac {1}{96}}\,W_{{4}} \left( N
\right) p_{{1}} \left( N \right) -{\frac {1}{96}}\,p_{{1}} \left( {
\it TW} \right) W_{{4}} \left( N \right)$$
Now, given that
$$TQ \mid _{W} = TW \oplus N$$
$$p_{{1}} \left( TQ \right) =p_{{1}} \left( {\it TW}\right) +p_{{1}} \left( N \right)$$
$$p_{{2}} \left( TQ \right) =p_{{2}} \left( {\it TW} \right) +p_{{2}} \left( N \right) +p_{{1}} \left( {\it TW} \right) p_{{1}} \left( N \right)$$
we deduce that
$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$
and
$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
\right) + p_{{1}} \left( N \right) ^{2}$$
Then using these last equations we obtain
$$I_{8}^{\theta} = {\frac {7}{5760}}p_{{1}} \left( {\it TQ} \right) ^{
2}-{\frac {1}{144}}\,p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
\right) +{\frac {1}{120}}p_{{1}} \left( N \right) ^{2}+$$
$${\frac {p_{{2}} \left( N \right) }{90}}-{\frac {p_{
{2}} \left( {\it TQ} \right)}{1440}} +\frac{W_{{4}} \left( N \right) p_{{1}}
\left( N \right)}{48} -{\frac {W_{{4}} \left( N \right) p_{{1}}\left( {\it TQ} \right)}{96}}$$
and it is exactly the equation $(8)$ on page 4 of http://arxiv.org/pdf/hep-th/9709012v1.pdf .
The second kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $SU(2)$ gauginos or $\lambda$-fermions; and they belong to the $(1,3,4_{-},2_{-})$ representation of $SO(32) × SU(2) × SO(5,1) × SO(4)$.
The total gravitational anomaly of the $\lambda$-fermion zero modes living in the world-volume of the heterotic $SO(32)$ fivebrane is given by descent from
$$I_{8}^{\lambda}=-\frac{1}{2}[\hat{A}(TW)ch(S_{-}(N))Tr(e^{iG})]_{8-form}$$
where $2\pi G$ is the $SU(2)$ curvature and $Tr$ is the trace in the adjoint representation $SU(2)$.
Using that
$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$
$$ch(S_{-}(N))=2+\frac{p_{{1}}(N) -W_{{4}} \left( N \right) }{4}+\frac {p_{1}(N)^2+4p_{2}(N)- 4 W_{4} ( N )p_{1}(N)}{192}$$
$${\it Tr} \left( {{\rm e}^{{\it iG}}} \right) =3-\frac{1}{2}\,{\it Tr} \left( {
G}^{2} \right) +\frac{1}{24}\,{\it Tr} \left( {G}^{4} \right) $$
we obtain
$$I_{8}^{\lambda}=\frac{1}{16}p_{{1}} \left( N \right) {\it Tr} \left( {G}^{2} \right) -\frac{1}{48}
p_{{1}} \left( {\it TW} \right) {\it Tr} \left( {G}^{2} \right) -$$
$${\frac {1}{128}}p_{{1}} \left( N \right) ^{2}+{
\frac {1}{480}}\,p_{{2}} \left( {\it TW} \right) -{\frac {7}{1920}}\,
p_{{1}} \left( {\it TW} \right) ^{2}-$$
$$\frac{1}{32}p_{{2}}
\left( N \right) +\frac{1}{32}W_{{4}} \left( N \right) p_{{1}} \left( N
\right) -\frac{1}{32}p_{{1}} \left( {\it TW} \right) W_{{4}} \left( N
\right) - $$
$$\frac{1}{24}{\it Tr} \left( {G}^{4} \right) -\frac{1}{8}W_{{4}} \left( N
\right) {\it Tr} \left( {G}^{2} \right) +{\frac {1}{64}}\,p_{{1}}
\left( {\it TW} \right) p_{{1}} \left( N \right)$$
Using again
$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$
and
$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
\right) + p_{{1}} \left( N \right) ^{2}$$
we obtain
$$I_{8}^{\lambda}={\frac {1}{12}}p_{{1}} \left( N \right) {\it Tr} \left( {G}^{2} \right) -{\frac {1}{48}}
{\it Tr} \left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -{\frac {1}{40}}
p_{{1}} \left( N \right) ^{2}+$$
$${\frac {1}{480}}\,p_{
{2}} \left( {\it TQ} \right) -{\frac {1}{30}}p_{{2}} \left( N \right) +{\frac {1}{30}}p_
{{1}} \left( N \right) p_{{1}} \left( {\it TQ} \right) -$$
$${\frac {7}{
1920}}p_{{1}} \left( {\it TQ} \right) ^{2}+{\frac {1}{16}}W_
{{4}} \left( N \right) p_{{1}} \left( N \right) -{\frac {1}{32}}W_{{4}} \left(
N \right) p_{{1}} \left( {\it TQ} \right) -$$
$${\frac {1}{24}}{\it Tr} \left( {G}^{
4} \right) -{\frac {1}{8}}W_{{4}} \left( N \right) {\it Tr} \left( {G}^{2}
\right)$$
and it is exactly the equation $(10)$ on page 4 of http://arxiv.org/pdf/hep-th/9709012v1.pdf .
The third kind of chiral fermions that are living in the worldvolume of the heterotic $SO(32)$ fivebrane are called $\psi$-fermions; and they belong to the $(32,2)$ representation of $SO(32)×SU(2)$.
The total gravitational anomaly of the $\psi$-fermion zero modes living in the world-volume of the heterotic $SO(32)$ fivebrane is given by descent from
$$I_{8}^{\psi}=\frac{1}{2}[\hat{A}(TW)Tr(e^{iF})Tr(e^{iG})]_{8-form}$$
where $2\pi G$ is the $SU(2)$ curvature, $2\pi F$ is the $SO(32)$ curvature and $tr$ is the trace in the fundamental representation.
Using that
$$\hat{A}(TW)=1-\frac{1}{24}\,p_{{1}}(TW)-{\frac {1}{1440}}\,p_{{2}}(TW)+{\frac {7}{5760}}\,{p_{{1 }}}(TW)^{2}$$
$${\it tr} \left( {{\rm e}^{{\it iG}}} \right) =2-\frac{1}{2}\,{\it tr} \left( {
G}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {G}^{4} \right) $$
$${\it tr} \left( {{\rm e}^{{\it iF}}} \right) =32-\frac{1}{2}\,{\it tr} \left( {
F}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) $$
we obtain
$$I_{8}^{\psi}= -\frac{1}{45}\,p_{{2}} \left( {\it TW} \right) +{\frac {7}{180}}p_{{
1}} \left( {\it TW} \right) ^{2}+\frac{2}{3}\,{\it tr} \left( {G}^{4}
\right) +$$
$$\frac{1}{48}\,p_{{1}} \left( {\it TW} \right) {\it tr} \left( {F}^{2
} \right) +\frac{1}{8}\,{\it tr} \left( {G}^{2} \right) {\it tr} \left( {F}^{2
} \right) +\frac{1}{3}\,p_{{1}} \left( {\it TW} \right) {\it tr} \left( {G}^{2
} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right)$$
Using again
$$p_{{1}} \left( {\it TW} \right) =p_{{1}} \left( {\it TQ} \right) -p_{{1}} \left( N \right)$$
and
$$p_{{2}} \left( {\it TW} \right) =p_{{2}} \left( {\it TQ} \right) -p_{{
2}} \left( N \right) -p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
\right) + p_{{1}} \left( N \right) ^{2}$$
we have that
$$I_{8}^{\psi}=-\frac {1}{45}\,p_{{2}} \left( {\it TQ} \right) +\frac {1}{45}\,p_{{2}} \left( N
\right) -\frac {1}{18}\,p_{{1}} \left( N \right) p_{{1}} \left( {\it TQ}
\right) +{\frac {1}{60}}p_{{1}} \left( N \right) ^{2}+$$
$${\frac {7}{180}}p_{{1}} \left( {\it TQ} \right) ^{2}+\frac {2}{3}\,{\it tr} \left( {G}^{4} \right) +\frac{1}{48}\,{\it tr}
\left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac {1}{48}\,{\it tr
} \left( {F}^{2} \right) p_{{1}} \left( N \right) +$$
$$\frac {1}{8}\,{\it tr}
\left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right) +\frac {1}{3}\,{\it tr}
\left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{3}\,{\it tr}
\left( {G}^{2} \right) p_{{1}} \left( N \right) +\frac{1}{24}\,{\it tr}
\left( {F}^{4} \right)$$
and it is exactly the equation $(12)$ on page 5 of http://arxiv.org/pdf/hep-th/9709012v1.pdf .
The total anomaly is $I_8 = I_8^{\theta}+I_8^{\lambda}+I_8^{\psi}$ and then we have
$$I_8=\frac{1}{12}\,W_{{4}} \left( N \right) p_{{1}} \left( N \right) +\frac{1}{48}\,{\it tr
} \left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{48}\,{\it
tr} \left( {F}^{2} \right) p_{{1}} \left( N \right) +$$
$$\frac{1}{3}\,{\it tr}
\left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{3}\,{\it tr}
\left( {G}^{2} \right) p_{{1}} \left( N \right) -\frac{1}{48}\,p_{{2}}
\left( {\it TQ} \right) -\frac{1}{24}\,p_{{1}} \left( N \right) p_{{1}}
\left( {\it TQ} \right) +$$
$${\frac {7}{192}}p_{{1}} \left( {
\it TQ} \right) ^{2}-\frac{1}{24}\,W_{{4}} \left( N \right) p_{{1}}
\left( {\it TQ} \right) -\frac{1}{24}\,{\it Tr} \left( {G}^{4} \right) -\frac{1}{8}\,
W_{{4}} \left( N \right) {\it Tr} \left( {G}^{2} \right) +$$
$$\frac{1}{12}\,p_{{1}
} \left( N \right) {\it Tr} \left( {G}^{2} \right) -\frac{1}{48}\,{\it Tr}
\left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) +\frac{2}{3}\,{\it tr}
\left( {G}^{4} \right) +$$
$$\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) +\frac{1}{8}\,{
\it tr} \left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right)$$
Now, using $Tr(G^2)=4tr(G^2)$ and $Tr(G^4)=16tr(G^4)$, we obtain
$$I_8=\frac{1}{12}\,W_{{4}} \left( N \right) p_{{1}} \left( N \right) -\frac{1}{24}\,p_{{1}}
\left( N \right) p_{{1}} \left( {\it TQ} \right) -\frac{1}{24}\,W_{{4}}
\left( N \right) p_{{1}} \left( {\it TQ} \right) +$$
$${\frac {7}{192}}p_{{1}} \left( {\it TQ} \right) ^{2}-\frac{1}{2}\,W_{{4}}
\left( N \right) {\it tr} \left( {G}^{2} \right) +\frac{1}{4}\,{\it tr}
\left( {G}^{2} \right) p_{{1}} \left( {\it TQ} \right) +$$
$$\frac{1}{8}\,{\it tr}\left( {G}^{2} \right) {\it tr} \left( {F}^{2} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right) +\frac{1}{48}\,{\it tr} \left( {F}^{2} \right) p_{{1}} \left( {\it TQ} \right) -$$
$$\frac{1}{48}\,{\it tr} \left( {F}^{2} \right) p_{{1
}} \left( N \right) -\frac{1}{48}\,p_{{2}} \left( {\it TQ} \right)$$
and it is exactly the equation $(14)$ on page 5 of http://arxiv.org/pdf/hep-th/9709012v1.pdf .
Finally the total anomaly is rewritten as
$$I_8 =[W_{{4}} \left( N \right) -\frac{1}{4}\,{\it tr} \left( {F}^{2} \right) -\frac{1}{2}\,p_{{1}} \left( {\it TQ} \right) ][\frac{1}{12}p_{1}(N)-\frac{1}{2}tr(G^2)-\frac{1}{24}p_{1}(TQ)] +$$
$${\frac {1}{64}}p_{{1}} \left( {\it TQ} \right) ^{2}-\frac{1}{48}\,p_{{2}} \left( {\it
TQ} \right) +{\frac {1}{96}}\,{\it tr} \left( {F}^{2} \right) p_{{1}}
\left( {\it TQ} \right) +\frac{1}{24}\,{\it tr} \left( {F}^{4} \right)$$
and it is exactly the equation $(15)$ on page 5 of http://arxiv.org/pdf/hep-th/9709012v1.pdf .