# One question about "TASI 2003 LECTURES ON ANOMALIES" by Jeffrey A. Harvey

+ 2 like - 0 dislike
610 views

I am trying to understand the equation (122)

Making my proper computation I am obtaining

$$-\int_{M^4}da \wedge d\omega_{2} ^{1}=-\int_{M^4}[d^2a \wedge\omega_{2} ^{1}-d(da \wedge \omega_{2} ^{1}) ]=$$

$$-\int_{M^4}d^2a \wedge\omega_{2} ^{1}+\int_{M^4}d(da \wedge \omega_{2} ^{1}) =$$

$$-\int_{M^4}d^2a \wedge\omega_{2} ^{1}+\int_{\partial M^4}da \wedge \omega_{2} ^{1}= -\int_{M^4}d^2a \wedge\omega_{2} ^{1}+0= -\int_{M^4}d^2a \wedge\omega_{2} ^{1}$$

My question is:  if my computation is correct and then  a minus sign is missing in the last integral of (122)?

edited Apr 3, 2016

+ 1 like - 0 dislike

You're totally right. Then it seems there may be a sign error in the formula.

answered Apr 3, 2016 by Bootstrapper
+ 0 like - 0 dislike

It's just a statement about integration by parts, following from

$$d(d a \wedge \omega_2^{(1)}) = d^2 a \wedge \omega_2^{(1)} + d a \wedge d \omega_2^{(1)}$$

(since $a$ is a 0-form) together with $\int d \, (\text{anything}) = 0$.

answered Apr 3, 2016 by Bootstrapper

Please note that the correct expression is

$$d(d a \wedge \omega_2^{(1)}) = d^2 a \wedge \omega_2^{(1)} - d a \wedge d \omega_2^{(1)}$$

given that $da$ is a 1-form.  Do you agree?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverfl$\varnothing$wThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.