Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,800 comments
1,470 users with positive rep
820 active unimported users
More ...

  An exercise in Geometric Topology for physicists

+ 2 like - 0 dislike
1407 views

Compute the first, second and third Hirzebruch $L$-polynomials $L_1(p_1)$, $L_2(p_1,p_2)$ and $L_3(p_1,p_2,p_3)$  using the fact that $\mathbb{C}P^2$, $\mathbb{C}P^4$, $\mathbb{C}P^6$, $\mathbb{C}P^2 \times\mathbb{C}P^2$, $\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2$ and $\mathbb{C}P^4 \times\mathbb{C}P^2$  have signature 1 and the Hirzebruch signature formula.·

asked Sep 19, 2015 in Mathematics by juancho (1,130 points) [ no revision ]

1 Answer

+ 2 like - 0 dislike

We look for Hirzebruch $L$-polynomials with the form

$$L_1(p_1)=ap_1$$

$$L_2(p_1,p_2)=b_1p_1^2+b_2p_2$$

$$L_3(p_1,p_2,p_3)=c_1p_1^3+c_2p_1p_2+c_3p_3$$

where the coefficients $a,b_1, b_2,c_1,c_2.c_3$ must be computed.

The Hirzebruch signature formula says that for any closed smooth oriented 4-manifold $M^4$ we have

$$\tau \left( {M}^{4} \right) =\int_{M^4}L_{{1}} \left( p_{{1}} \left( {M}^
{4}\right)  \right) $$

The Hirzebruch signature formula says that for any closed smooth oriented 8-manifold $M^8$ we have

$$\tau \left( {M}^{8} \right) =\int_{M^8}L_{{2}} \left( p_{{1}} \left( {M}^
{8} \right) ,p_{{2}} \left( {M}^{8} \right)  \right) $$

The Hirzebruch signature formula says that for any closed smooth oriented 12-manifold $M^{12}$ we have

$$\tau \left( {M}^{12} \right) =\int_{M^{12}}L_{{3}} \left( p_{{1}} \left( {M}
^{12} \right) ,p_{{2}} \left( {M}^{12} \right) ,p_{{3}} \left( {M}^{12
} \right)  \right)$$

The total Chern classes for the considered complex projective spaces are

$$c (\mathbb{C}P^{2})=1+3\,f+3\,{f}^{2}$$

$$c (\mathbb{C}P^{4})= 1+5\,g+10\,{g}^{2}+10\,{g}^{3}+5\,{g}^4$$

$$c (\mathbb{C}P^{6})=1+7\,h+21\,{h}^{2}+35\,{h}^{3}+35\,{h}^{4}+21\,{h}^{5}+7\,{h}^{6}$$

$c(\mathbb{C}P^2 \times\mathbb{C}P^2)=\\1+3\,f_{{2}}+3\,f_{{1}}+3\,{f_{{2}}}^{2}+9\,f_{{1}}f_{{2}}+3\,{f_{{1}}
}^{2}+9\,f_{{1}}{f_{{2}}}^{2}+9\,{f_{{1}}}^{2}f_{{2}}+9\,{f_{{1}}}^{2}{f_{{2}}}^{2}$

$c(\mathbb{C}P^2 \times\mathbb{C}P^2\times\mathbb{C}P^2)=\\1+ \left( 3\,f_{{3}}+3\,f_{{2}}+3\,f_{{1}} \right) +\\ \left( 3\,{f_{{3}}}^{2}+9\,f_{{3}}f_{{2}}+9\,f_{{3}}f_{{1}}+3\,{f_{{2}}}^{2}+9\,f_{{1
}}f_{{2}}+3\,{f_{{1}}}^{2} \right) + \\\left( 9\,{f_{{3}}}^{2}f_{
{2}}+9\,{f_{{3}}}^{2}f_{{1}}+9\,f_{{3}}{f_{{2}}}^{2}+27\,f_{{3}}f_{{1}
}f_{{2}}+9\,f_{{3}}{f_{{1}}}^{2}+9\,f_{{1}}{f_{{2}}}^{2}+9\,{f_{{1}}}^
{2}f_{{2}} \right) +\\ \left( 9\,{f_{{3}}}^{2}{f_{{2}}}^{2}+27\,{
f_{{3}}}^{2}f_{{1}}f_{{2}}+9\,{f_{{3}}}^{2}{f_{{1}}}^{2}+27\,f_{{3}}f_
{{1}}{f_{{2}}}^{2}+27\,f_{{3}}{f_{{1}}}^{2}f_{{2}}+9\,{f_{{1}}}^{2}{f_
{{2}}}^{2} \right) +\\ \left( 27\,{f_{{3}}}^{2}f_{{1}}{f_{{2}}}^{
2}+27\,{f_{{3}}}^{2}{f_{{1}}}^{2}f_{{2}}+27\,{f_{{1}}}^{2}{f_{{2}}}^{2
}f_{{3}} \right) +27\,{f_{{1}}}^{2}{f_{{2}}}^{2}{f_{{3}}}^{2}$

$c(\mathbb{C}P^2 \times\mathbb{C}P^4)=\\1+ \left( 3\,f+5\,g \right) + \left( 3\,{f}^{2}+15\,gf+10\,{g}^{2} \right) + \\\left( 15\,g{f}^{2}+30\,{g}^{2}f+10\,{g}^{3}
 \right) + \left( 30\,{g}^{2}{f}^{2}+30\,{g}^{3}f+5\,{g}^{4}
 \right) +\\ \left( 30\,{g}^{3}{f}^{2}+15\,{g}^{4}f \right) +15\,{g}^{4}{f}^{2}$

where the cohomological generators are normalized according to

$$\int_{\mathbb{C}P^2}f^2 = 1$$

$$\int_{\mathbb{C}P^4}g^4 = 1$$

$$\int_{\mathbb{C}P^6}h^6 = 1$$

$$\int_{\mathbb{C}P^2 \times\mathbb{C}P^2}f_1^2f_2^2 =\int_{\mathbb{C}P^2}f_1^2 \int_{\mathbb{C}P^2}f_2^2 = (1)(1)=  1$$

$$\int_{\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2}f_1^2f_2^2f_3^2 =\int_{\mathbb{C}P^2}f_1^2 \int_{\mathbb{C}P^2}f_2^2 \int_{\mathbb{C}P^2}f_3^2 = (1)(1)(1)=  1$$

$$\int_{\mathbb{C}P^2 \times\mathbb{C}P^4}f^2g^4=\int_{\mathbb{C}P^2}f^2 \int_{\mathbb{C}P^4}g^4 = (1)(1)=  1$$

Now using the following expressions for the Pontryagin classes in terms of the Chern classes

$$p_1= -2\,c_{{2}}+{c_{{1}}}^{2}$$

$$p_{{2}}=-2\,c_{{1}}c_{{3}}+{c_{{2}}}^{2}+2\,c_{{4}}$$

$$p_{{3}}=-2\,c_{{2}}c_{{4}}+{c_{{3}}}^{2}-2\,c_{{6}}+2\,c_{{1}}c_{{5}}$$

we obtain that

$$p_{{1}}(\mathbb{C}P^2) =3\,{f}^{2}$$

$$p_{{1}}(\mathbb{C}P^4) =5\,{g}^{2}$$

$$p_{{1}}(\mathbb{C}P^6) =7\,{h}^{2}$$

$$ p_1(\mathbb{C}P^2 \times\mathbb{C}P^2) =3\,{f_{{2}}}^{2}+3\,{f_{{1}}}^{2}$$

$$ p_1(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2 )= 3\,{f_{{3}}}^{2}+3\,{f_{{2}}}^{2}+3\,{f_{{1}}}^{2}$$

$$ p_1(\mathbb{C}P^2 \times\mathbb{C}P^4) =3\,{f}^{2}+5\,{g}^{2}  $$

$$p_{{2}}(\mathbb{C}P^4) =10\,{g}^{4}$$

$$p_{{2}}(\mathbb{C}P^6) =21\,{h}^{4}$$

$ p_2(\mathbb{C}P^2 \times\mathbb{C}P^2) =9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9\,{f_{{2}}}^{4}+9\,{f_{{1}}}^{4}=9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9(0)+9(0)=9\,{f_{{1}}}^{2}{f_{{2}}}^{2}$

$ p_2(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)=\\9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9\,{f_{{2}}}^{4}+9\,{f_{{1}}}^{4}+9\,{f_{{3}}}^{2}{f_{{2}}}^{2}+9\,{f_{
{3}}}^{2}{f_{{1}}}^{2}+9\,{f_{{3}}}^{4}=\\ \\9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9(0)+9(0)+9\,{f_{{3}}}^{2}{f_{{2}}}^{2}+9\,{f_{
{3}}}^{2}{f_{{1}}}^{2}+9(0)=\\9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9\,{f_{{3}}}^{2}{f_{{2}}}^{2}+9\,{f_{
{3}}}^{2}{f_{{1}}}^{2}$

$$ p_2(\mathbb{C}P^2 \times\mathbb{C}P^4) =15\,{g}^{2}{f}^{2}+10\,{g}^{4}+9\,{f}^{4}=15\,{g}^{2}{f}^{2}+10\,{g}^{4}$$

$$p_{{3}}(\mathbb{C}P^6) = 35\,{h}^{6}$$

$p_3(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)=\\ 27\,{f_{{1}}}^{2}{f_{{2}}}^{2}{f_{{3}}}^{2}+27\,{f_{{1}}}^{4}{f_{{2}}}^{2}+27\,{f_{{1}}}^{2}{f_{{2}}}
^{4}+27\,{f_{{3}}}^{2}{f_{{1}}}^{4}+27\,{f_{{3}}}^{2}{f_{{2}}}^{4}+27
\,{f_{{3}}}^{4}{f_{{1}}}^{2}+\\27\,{f_{{3}}}^{4}{f_{{2}}}^{2} =27\,{f_{{1}}}^{2}{f_{{2}}}^{2}{f_{{3}}}^{2}$

$$ p_3(\mathbb{C}P^2 \times\mathbb{C}P^4) =30\,{g}^{4}{f}^{2}+45\,{g}^{2}{f}^{4}= 30\,{g}^{4}{f}^{2}+45\,{g}^{2}(0)=30\,{g}^{4}{f}^{2}$$

Using these results we have that

$$L_1(p_1(\mathbb{C}P^2))=ap_1(\mathbb{C}P^2)=a(3\,{f}^{2})= 3af^2$$

$L_2(p_1(\mathbb{C}P^4),p_2(\mathbb{C}P^4))=b_1p_1(\mathbb{C}P^4)^2+b_2p_2(\mathbb{C}P^4)=b_1(5\,{g}^{2})^2+b_2(10\,{g}^{4})=\\ 25b_1g^4+10b_2g^4= (25b_1+10b_2)g^4$

$L_2(p_1(\mathbb{C}P^2 \times\mathbb{C}P^2),p_2(\mathbb{C}P^2 \times\mathbb{C}P^2))=\\b_1p_1(\mathbb{C}P^2 \times\mathbb{C}P^2)^2+b_2p_2(\mathbb{C}P^2 \times\mathbb{C}P^2)= b_1(3f_1^2+3f_2^2)^2+b_2(9f_1^2 f_2^2)=\\b_1(9f_1^4+18f_1^2f_2^2+9f_2^4)+9b_2f_1^2f_2^2=18b_1f_1^2f_2^2+9b_2f_1^2f_2^2=(18b_1+9b_2)f_1^2f_2^2$

$L_3(p_1(\mathbb{C}P^6),p_2(\mathbb{C}P^6),p_3(\mathbb{C}P^6))=\\c_1p_1(\mathbb{C}P^6)^3+c_2p_1(\mathbb{C}P^6)p_2(\mathbb{C}P^6)+c_3p_3(\mathbb{C}P^6)=\\ c_1(7h^2)^3+c_2(7h^2)(21h^4)+c_3(35h^6)=343c_1h^6+147c_2h^6+35c_3h^6   =\\ (343c_1+147c_2+35c_3)h^6$

$L_3(p_1(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2),p_2(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2),p_3(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2))=\\c_1p_1(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)^3+\\c_2p_1(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)p_2(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)+c_3p_3(\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2)=\\c_{{1}} \left( 3\,{f_{{1}}}^{2}+3{f_{{2}}}^{2}+3\,{f_{{3}}}^{2}
 \right) ^{3}+\\c_{{2}} \left( 3\,{f_{{1}}}^{2}+3{f_{{2}}}^{2}+3\,{f_{{3}
}}^{2} \right)  \left( 9\,{f_{{1}}}^{2}{f_{{2}}}^{2}+9\,{f_{{3}}}^{2}{
f_{{2}}}^{2}+9\,{f_{{3}}}^{2}{f_{{1}}}^{2} \right) +27\,c_{{3}}{f_{{1}
}}^{2}{f_{{2}}}^{2}{f_{{3}}}^{2}=\\27\,{f_{{1}}}^{2}{f_{{3}}}^{2}{f_{{2}}}^{2} \left( 6\,c_{{1}}+3\,c_{{2
}}+c_{{3}} \right)$

$L_3(p_1(\mathbb{C}P^2 \times\mathbb{C}P^4),p_2(\mathbb{C}P^2 \times\mathbb{C}P^4),p_3(\mathbb{C}P^2 \times\mathbb{C}P^4))=\\c_1p_1(\mathbb{C}P^2 \times\mathbb{C}P^4)^3+c_2p_1(\mathbb{C}P^2 \times\mathbb{C}P^4)p_2(\mathbb{C}P^2 \times\mathbb{C}P^4)+c_3p_3(\mathbb{C}P^2 \times\mathbb{C}P^4)=\\c_1(3f^2+5g^2)^3+c_2(3f^2+5g^2)(15g^2f^2+10g^4)+c_3(30g^4f^2)=\\15\,{f}^{2}{g}^{4} \left( 15\,c_{{1}}+7\,c_{{2}}+2\,c_{{3}} \right) $

Now, the Hirzebruch signature formula says that for $\mathbb{C}P^2$ we have

$$\tau \left( \mathbb{C}P^2 \right) =\int_{\mathbb{C}P^2}L_{{1}} \left( p_{{1}} \left(\mathbb{C}P^2\right)  \right)=1 $$

$$\int_{\mathbb{C}P^2}3af^2=1 $$

$$3a\int_{\mathbb{C}P^2}f^2=1 $$

$$3a=1$$

$$a=\frac{1}{3}$$

then we obtain

$$L_1(p_1)=\frac{1}{3}p_1$$

The Hirzebruch signature formula says that for $\mathbb{C}P^4$ we have

$$\tau \left( \mathbb{C}P^4 \right) =\int_{\mathbb{C}P^4}L_{{2}} \left( p_{{1}} \left( \mathbb{C}P^4 \right) ,p_{{2}} \left( \mathbb{C}P^4 \right)  \right) =1$$

$$\int_{\mathbb{C}P^4}(25b_1+10b_2)g^4=1$$

$$(25b_1+10b_2)\int_{\mathbb{C}P^4}g^4=1$$

$$25b_1+10b_2=1$$

The Hirzebruch signature formula says that for $\mathbb{C}P^2 \times\mathbb{C}P^2$ we have

$$\tau \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \right) =\int_{\mathbb{C}P^2 \times\mathbb{C}P^2}L_{{2}} \left( p_{{1}} \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \right) ,p_{{2}} \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \right)  \right) =1 $$

$$\int_{\mathbb{C}P^2 \times\mathbb{C}P^2}(18b_1+9b_2)f_1^2f_2^2 =1$$

$$(18b_1+9b_2)\int_{\mathbb{C}P^2 \times\mathbb{C}P^2}f_1^2f_2^2 =1$$

$$18b_1+9b_2=1$$

Solving the equations for $b_1$ and $b_2$ we obtain

$$b_{{1}}=-\frac{1}{45}$$

$$b_{{2}}= \frac{7}{45}$$

then we have that

$$L_{{2}} \left( p_{{1}},p_{{2}} \right) =-\frac{1}{45}{p_{{1}}}^{2}+{\frac {7
}{45}}\,p_{{2}}$$

The Hirzebruch signature formula says that for $\mathbb{C}P^6 $ we have

$$\tau \left( \mathbb{C}P^6 \right) =\int_{\mathbb{C}P^6}L_{{3}} \left( p_{{1}} \left( \mathbb{C}P^6 \right) ,p_{{2}} \left(\mathbb{C}P^6 \right) ,p_{{3}} \left( \mathbb{C}P^6 \right)  \right)=1$$

$$\int_{\mathbb{C}P^6}(343c_1+147c_2+35c_3)h^6=1$$

$$(343c_1+147c_2+35c_3)\int_{\mathbb{C}P^6}h^6=1$$

$$343c_1+147c_2+35c_3=1$$

The Hirzebruch signature formula says that for $\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2$ we have

$$\tau \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2 \right) =\\ \int_{\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2}L_{{3}} \left( p_{{1}} \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2 \right) ,p_{{2}} \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2 \right) ,\\p_{{3}} \left( \mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2 \right)  \right)=1$$

$$ \int_{\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2}27\,{f_{{1}}}^{2}{f_{{3}}}^{2}{f_{{2}}}^{2} =1$$

$$27\left( 6\,c_{{1}}+3\,c_{{2}}+c_{{3}} \right)\int_{\mathbb{C}P^2 \times\mathbb{C}P^2 \times\mathbb{C}P^2}\,{f_{{1}}}^{2}{f_{{3}}}^{2}{f_{{2}}}^{2} =1$$

$$27\left( 6\,c_{{1}}+3\,c_{{2}}+c_{{3}} \right)=1$$

The Hirzebruch signature formula says that for $\mathbb{C}P^2 \times\mathbb{C}P^4$ we have

$\tau \left( \mathbb{C}P^2 \times\mathbb{C}P^4 \right) =\\\int_{\mathbb{C}P^2 \times\mathbb{C}P^4}L_{{3}} \left( p_{{1}} \left( \mathbb{C}P^2 \times\mathbb{C}P^4 \right) ,p_{{2}} \left( \mathbb{C}P^2 \times\mathbb{C}P^4 \right) ,p_{{3}} \left( \mathbb{C}P^2 \times\mathbb{C}P^4 \right)  \right)=1$

$$\int_{\mathbb{C}P^2 \times\mathbb{C}P^4}15\,{f}^{2}{g}^{4} \left( 15\,c_{{1}}+7\,c_{{2}}+2\,c_{{3}} \right) =1$$

$$15\left( 15\,c_{{1}}+7\,c_{{2}}+2\,c_{{3}} \right)\int_{\mathbb{C}P^2 \times\mathbb{C}P^4}{f}^{2}{g}^{4} =1$$

$$15\left( 15\,c_{{1}}+7\,c_{{2}}+2\,c_{{3}} \right)=1$$

Solving the equations for $c_1$, $c_2$ and $c_3$ we obtain

$$c_{{1}}={\frac {2}{945}}$$

$$  c_{{2}}=-{\frac {13}{945}} $$

$$c_{{3}}={\frac {62}{945}}$$

then we have that

$$ L_{{3}}={\frac {2}{945}}\,{p_{{1}}}^{3}-{\frac {13}{945}}\,p_{{1}}p_{{
2}}+{\frac {62}{945}}\,p_{{3}}$$

answered Sep 20, 2015 by juancho (1,130 points) [ revision history ]
edited Sep 29, 2015 by juancho

But I've still never understood why the L-genus looks like it does. Is there some differential equation I expect it to satisfy?

Your question is very interesting and the answer is the theory of the "Elliptic genus".  I am planning to make a post with some explanations about how the Hirzebruch genus arises from the elliptic genus.  For the time is being please look at https://en.wikipedia.org/wiki/Genus_of_a_multiplicative_sequence#L_genus_and_the_Hirzebruch_signature_theorem

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...