The answer to this question can be found in Lubos Motl's answer to this question of mine on Physics.SE.
The key here are the weight lattices bosonic representations $\Gamma$ of these gauge groups.
As I understand it, the weight lattice of $E(8)$ is $\Gamma^8$, whereas the weight lattice of $\frac{\operatorname{Spin}\left(32\right)}{\mathbb{Z}_2}$^ is $\Gamma^{16}$. The first fact means that the weight lattice of $E(8)\times E(8)$ is $\Gamma^{8}\oplus\Gamma^8$,
Now, an identity, that $\Gamma^{8}\oplus\Gamma^8\oplus\Gamma^{1,1}=\Gamma^{16}\oplus\Gamma^{1,1} $ , which actually allows this T-Duality. Now, this means that it is this very identity which allows the identity mentioned in the original post.
So, the answer to your question is "Yes", there is a group-theoretical fact, and that is that $ \Gamma^{8}\oplus\Gamma^8\oplus\Gamma^{1,1}= \Gamma^{16}\oplus\Gamma^{1,1} $.
This post imported from StackExchange MathOverflow at 2015-11-20 14:51 (UTC), posted by SE-user Dimensio1n0