Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  What is the simplest way to realize or visualize SU(3)?

+ 1 like - 0 dislike
2946 views

SU(3) is an important group in physics. Is there a simple system from daily life that has this symmetry?

Or is there some pretty object that has the symmetry?

The question is inspired by the buckle at the end of a belt, which behaves like SU(2): rotations around x y and z behave like the three generators. This is nicely shown by Dirac's string trick. Another example is given in  Visualizing Quaternion Rotation by Hart, Francis, L. Kauffman, , https://dl.acm.org/citation.cfm?id=197480 (free pdf via scholar.google.com). They explain how the rotations of the *palm of a hand* are exactly like SU(2), including the double cover. So it is possible to visualize SU(2).

Is there something similar for SU(3)?

asked Oct 30, 2017 in Mathematics by anonymous [ revision history ]
edited Oct 31, 2017

1 Answer

+ 3 like - 0 dislike

The reason why you can think of $SU(2)$ as rotations in 3 dimensions is because it is closely related with the actual group of rotations in 3 dimensions, that is $SO(3)$. The former is the double cover of the latter, that means there exists a 2:1 group homomorphism $\rho :  SU(2) \to SO(3)$. Even those groups are very hard to imagine. First of all note that as a group manifold $SO(3)$ is isomorphic to $\mathbb{RP}^3$. Of course it is impossible to actually visualise this. At least I cannot. Then, $SO(3) \cong SU(2)/\mathbb{Z}_2$ where $\mathbb{Z}_2$ is the center of $SU(2)$. This is even harder to imagine or visualise despite $SU(2)$ being simply connected, $\pi_1(SU(2))=1$. Although both groups can be thought of as spheres topologically, you lose much information about their actual structure if you think in such a naive way. Now going to $SU(3)$. This group does not have a similar to the previous one group isomorphism. Therefore it is not easy to give it some interpretation as the rotation group in $3+1$ dimensions (since $SU(2)$ would correspond to rotations in 2+1). The best way to understand unitary (and not only) groups is through their representation theory, i.e. how they act on some vector space. There you can think of rotations quite nicely. Then $SU(3)$ is the group whose elements are unitary matrices with determinant one and rotate basis of a 3 dimensional complex vector space. 

answered Oct 31, 2017 by conformal_gk (3,625 points) [ no revision ]

Added some details above to clarify.

You don't actually visualize it as a group manifold. You visualize the action that it has on something like a spinor (i.e. your palm). And what you actually visualize is the double covering. You don't have such a map for SU(3) that will link it to some space rotation.

True, you visualize the action, not the group. And the original question was whether there is a similar visualization (of the action) for SU(3).

No.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...