SU(3) is an important group in physics. Is there a simple system from daily life that has this symmetry?
Or is there some pretty object that has the symmetry?
The question is inspired by the buckle at the end of a belt, which behaves like SU(2): rotations around x y and z behave like the three generators. This is nicely shown by Dirac's string trick. Another example is given in Visualizing Quaternion Rotation by Hart, Francis, L. Kauffman, , https://dl.acm.org/citation.cfm?id=197480 (free pdf via scholar.google.com). They explain how the rotations of the *palm of a hand* are exactly like SU(2), including the double cover. So it is possible to visualize SU(2).
Is there something similar for SU(3)?