Quantcast
Processing math: 100%
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.
W3Counter Web Stats

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public β tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,106 questions , 2,251 unanswered
5,412 answers , 23,075 comments
1,470 users with positive rep
822 active unimported users
More ...

  Kalb-Ramond in T-duality

+ 3 like - 0 dislike
305 views

I'm working through a particular problem (Problem 17.4) in Zweibach's "A first course in string theory", because I'm trying to understand how the Kalb-Ramond field affects T-duality.

The question considers compactification on T2 with a constant Kalb-Ramond field B23=12παb and all other components vanishing. I have found that the coordinates x2 and x3 (the circle coordinates) have conjugate momenta given by p2=˙x2αbw3

p3=˙x3α+bw2

That is, the effect of the Kalb-Ramond field is to kind of 'twist' the momentum with the winding. We note that the momentum is quantised as pr=nrR, and the winding is quantised as wr=mrRα. Everything is good until the end, when we're asked to show that the mass-squared operator takes the following form:

M2=(n2R+bm3Rα)2+(n3Rbm2Rα)2+(m2Rα)2+(m3Rα)2+2α(N+ˉN2)

This is the part I don't understand. This has the form M2=(˙x2)2+(˙x3)2+w22+w23+...

whereas from the case of the single circle compactification, I would expect it would be something like p22+p23+w22+w23+... Indeed, when I attempted the calculation that was exactly what I got. This was my attempt at the calculation:

M2=p2=2p+ppipi=2α(L0+ˉL02)pipi

For compact directions, the L0 operator picks up a factor of 12α0α0=α4(pw)2 for each compact direction, and the ˉL0 operator picks up a factor of 12ˉα0ˉα0=α4(p+w)2, as shown in Section 17.5 of the book. That is,
L0=α4pipi+α4(p2w2)2+α4(p3w3)2+N
ˉL0=α4pipi+α4(p2+w2)2+α4(p3+w3)2+N
With this in hand, completing the computation gives M2=p22+p23+w22+w23+2α(N+ˉN2)

As I expected. While the winding number terms clearly match up with what we are required to show, the momenta don't match up.

Why does the velocity appear in the mass-squared operator rather then the momentum? Have I misinterpreted the role of the various momenta here?

Here is the entire question for completeness:

This post imported from StackExchange Physics at 2016-02-04 18:32 (UTC), posted by SE-user Mark B
asked Jan 27, 2016 in Theoretical Physics by Mark B (55 points) [ no revision ]
retagged Feb 4, 2016

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol in the following word:
pysicsOverlow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...