Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  How to get the equations of motion with the Kalb-Ramond 3-form field strength by varying the bosonic string action?

+ 1 like - 0 dislike
1101 views

I have the bosonic string action:

\(S= - {1 \over 4 \pi \alpha'} \int_\Sigma d^2\sigma \sqrt{-g} g^{ab} \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}(X)\, +\epsilon^{ab} B_{\mu\nu}(X) \partial_a X^\mu \partial_b X^\nu\)

where \(G_{\mu\nu}\)is the metric for the background spacetime, \(g_{ab}\)is the worldsheet metric, \(B_{\mu\nu}\)is the Kalb-Ramond 2-form field and \(\epsilon^{ab}\)is the totally antisymmetric tensor density.

I'm supposed to get the equations of motion:

\[\partial_a \partial^a X^\mu + \Gamma^\mu_{\nu\rho}\partial_a X^\nu \partial^a X^\rho - \frac{1}{2} H^\mu_{\nu\rho} \partial_a X^\nu \partial_b X^\rho \epsilon^{ab}= 0\]

where \(\Gamma^\mu_{\nu\rho}\)are the connection components for the background spacetime and \(H^{\mu}_{\mu\rho} = G^{\mu\xi}H_{\xi\nu\rho}\)are the components of the Kalb-Ramond field strength \(H=dB\). When I vary the second term of the action I get a term of the form  \(\nabla_a B_{\mu\nu} \partial_b X^\nu \epsilon^{ab} = \nabla_\rho B_{\mu\nu} \partial_a X^\rho \partial_bX^\nu \epsilon^{ab}\), but I don't know how to get the other terms of \(H_{\mu\nu\rho} = \frac{1}{2} \nabla_{[\mu} B_{\nu\rho]}\).

What I do instead is assume the worldsheet is the boundary of some 3-dimensional region. Then the second term of the action turns into an integral of \(H\) over this region and the variation gives the desired equations of motions.

This seems a bit hacky, as I'm not sure I can assume the worldsheed is a boundary even for a closed string, and obviously not for the open string. I'd also like to analyze the two terms of the action in parallel. Is there a way to get the equations of motion in this form by direct variation of the action?

asked Aug 27, 2019 in Theoretical Physics by prchernev (15 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...