Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,794 comments
1,470 users with positive rep
820 active unimported users
More ...

  Homotopy group of the conformal group

+ 2 like - 0 dislike
1392 views

I would like to know which are the first three homotopy groups of the conformal group SO(4,2): $$ \pi_n(SO(4,2))=? \quad n=1,2,3 $$


This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user marRrR

asked May 24, 2016 in Mathematics by marRrR (10 points) [ revision history ]
edited May 25, 2016 by Dilaton

1 Answer

+ 0 like - 0 dislike

The group $SO(n) \subset SO(n+1)$ by an $n-1$-connected map. Consequently for $k < n-1$ $\pi_k(O(n+1)) = \pi_k(O(n))$. I am euclideanizing $SO(4,2) \rightarrow SO(6)$, and not considering for the time the hyperbolic aspects. So all we have to consider is the fundamental group $\pi_1(SO(4,2))$ The Serre fibration $$ SO(n) \rightarrow SO(n+1) \rightarrow SO(n+1)/SO(n) \sim S^n $$ gives the sequence of homotopies $$ \pi_k(SO(n)) \rightarrow \pi_k(SO(n+1)) \rightarrow \pi_k(SO(n+1)/SO(n)) $$ has $\pi_k(S^n) = 0$ this demonstrates the equality. I will now state that it is known that the fundamental group of Lie algebras are abelian.

To continue this, sorry I had to post due to interruption, I now appeal to Bott periodicity. I now use the fact from Bott periodicity theorem that $\pi_k(Sp) = \pi_{k+4}(O)$. Now we can focus in on $\pi_1(sp(2))$ and the knowledge that $sp(2) \sim U(1)$. The homotopy is abelian, which means it is equal to its homology group, which for the circle is $\mathbb Z$

As for not going hyperbolic, it is the case with physics problems that one looks at the Euclidean case first.

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user Lawrence B. Crowell
answered May 24, 2016 by Lawrence B. Crowell (590 points) [ no revision ]
What is an $n-1$-connected map?

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user Danu
Why would "Euclideanizing" preserve the homotopy groups? It doesn't preserve other topological properties like compactness. Also, you didn't actually give the homotopy groups, stating they are Abelian does not uniquely identify them.

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user ACuriousMind
Do you mean that the fundamental group of Lie groups (not algebras: the algebra is of course the simply connected $\mathbb{R}^N$) is Abelian (as an aside: a property of general topological groups)?

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user WetSavannaAnimal aka Rod Vance
@WetSavannaAnimalakaRodVance -- yes, the fundamental group of any topological group is abelian (the fundamental group functor takes group objects in the category of spaces to group objects in the category of groups because it preserves products).

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user WillO
@WillO Indeed. See Thm 14.6 and 14.7 on my page herre for an elegant and very simple proof of this equivalence of products. Unfortunately the originator of this proof hasn't published it, and the blog where first I read about it is gone.

This post imported from StackExchange Mathematics at 2016-05-25 15:22 (UTC), posted by SE-user WetSavannaAnimal aka Rod Vance

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...