# Classification of constraints in Hamiltonian formalism

+ 3 like - 0 dislike
598 views

I am reading this paper, where the claim is from hamiltonian formalism one can show that non-local theories of gravity are ghost-free. Before going to complication, I would like to see a clear definition (and mathematical formula of how to obtain the-) of primary constraint, secondary constraint, first class constraint and second class constraint. It would be appreciated to even point a toy example.

Moreover, I wonder how one uses these constraint(s) to count the number of degrees of freedom?

Also I wonder if one can uses such formalism and show that the given gravitational theory is bounded from below?

recategorized Jul 22, 2016

+ 4 like - 0 dislike

In Hamiltonian formalism, the phase space is a symplectic manifold i.e. a manifold $M$ equipped with a 2-form $\omega$ which is non-degenerate and closed. In a constrained system, the dynamical variables are constrained to lie on a submanifold $N$ of $M$. If the restriction of $\omega$ to $N$ is 0, then $N$ is called a coisotropic submanifold and the constraint is called first class. If the restriction of $\omega$ to $N$ is non-degenerate, then $N$ is called a symplectic submanifold and the constraint is called second class. A general $N$ can always be locall written as a product $N_1 \times N_2$ with $N_1$ coisotropic (first class) and $N_2$ symplectic (second class).

Same thing in a slightly different language: the symplectic structure defines a Poisson bracket $\{,\}$ on the algebra of functions on $M$. The constraints are the equations $f_i=0$ defining $N$. The constraints are called first class if $\{f_i,f_j\}=0$ up to the constraints, for all $i$, $j$. The constraints are called second class if the matrix $\{f_i,f_j\}$ is non-degenerate. In general, up to a change of variables, one can write the matrix of Poisson brackets $\{f_i,f_j\}$ in a block diagonal form: the first block being zero and the second block being non-degenerate. Constraints corresponding to the first block are called first class, the ones corresponding to the second are called second class.

The distinction between primary and secondary constraints appears in the context of the Hamiltonian description of a system given in  Lagrangian form. Primary constraints are the constraints which are there if the momenta are not independent (if the matrix of second derivatives of the Lagrangian with respect to the velocities is not invertible). Secondary constraints are extra constraints which are imposed by consistency of the primary constraints with the equations of motion.

If by number of degrees of freedom, one means the dimension of the symplectic manifold where the Hamiltonian dynamics is well-defined without constraints, it is $dim M - 2 n_1-n_1$ where $n_1$ is the number of first class constraints and $n_2$ is the number of second class constraints. Indeed, for a second class constraint, one simply has to restrict ourselves to the constrained submanifold but for a first class constraint, one has to quotient this submanifold by redundancies of the description ("gauge transformations"), which are as numerous as the first class constraints (coisotropic reduction).

The original reference on first/second class constraints is Dirac:

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$y$\varnothing$icsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.