The subspaces $V_n = Span \{ (a_1^{\dagger})^{n_1}, . . . (a_d^{\dagger})^{n_d} |0>\}$, $n_i \ge 0$, $ n_1 + . . . n_d = n$, constitute invariant subspaces of the operator $ S S^{\dagger}$ action. The dimension of $V_n$ is $ \frac{(d+n-1)!}{(d-1)! n!}$. Thus the operator can be represented on each of these subspaces as a square matrix of size $ \frac{(d+n-1)!}{(d-1)! n!}$ for which the spectrum can be found by elementary linear algebra. The spectrum on the whole of the Fock space is the union of the spectra over $V_n$, $ n = 0, 1, . . .$
This post imported from StackExchange Physics at 2016-10-04 13:43 (UTC), posted by SE-user David Bar Moshe